Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Пробиотики, постбиотики и парапробиотики

https://doi.org/10.31146/1682-8658-ecg-205-9-240-250

Аннотация

В последние годы в связи с широким внедрением молекулярно-генетических методов исследования кишечного микробиома и доказательства его роли в развитии многих социально-значимых заболеваний, стратегии воздействия на здоровье человека путем коррекции микробиоты и ее функций стали особенно востребованы. С этой целью обычно используют пробиотики, которые представляют собой живые микроорганизмы, которые улучшают здоровье хозяина. У них есть определенные показания и, в целом, хорошая переносимость. Но крайне редко их прием может осложняться развитием бактериемии, особенно у иммунокомпромиссных пациентов. Условие сохранения живых функционально активных бактерий не всегда достижимо. Это побуждает к поиску возможностей использования неживых бактериальных клеток, получивших название парапробиотиков, или компонентов микробных клеток и их метаболитов - постбиотиков. Исследования показывают, что парапробиотики по воздействию на иммунную систему и кишечный барьер не уступают эффекту пробиотиков, но отличаются лучшей сохранностью и безопасностью. Постбиотики также приближаются по многим параметрам к действию пробиотиков и отличаются большей стабильностью. Однако оптимальные технологии производства парапробиотиков и постбиотиков, а также показания к ним пока четко не разработаны. Это требует дальнейших исследований.

Об авторе

Елена Александровна Корниенко
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства Здравоохранения Российской Федерации
Россия


Список литературы

1. FAO/WHO. Working group on drafting guidelines for the evaluation of probiotics in food. Guidelines for the evaluation of probiotics in food. 2002. Available at: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf.

2. Madsen K., Jijon H., Jeung H. DNA from probiotic bacteria exerts anti-inflammatory action on epithelial cells by inhibition of NF-kB. Gastroenterology, 2002, vol.122, pp.A-64.

3. Probiotic bacteria in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. Journal of Pediatric Gastroenterology and Nutrition, 2004, vol.38, pp.365-374.

4. Cruchet S., Furoes R., Maruy A., et al. The use of probiotics in pediatric gastroenterology: A review of literature and recommendations by Latin-American experts. Pediatric Drugs. doi:10.1007/s40272-015-0124-6.

5. Borchers A. T. Probiotics and immunity. Journal of Gastroenterology, 2009, vol.4, pp.26-46.

6. Supplementation of infant formula with probiotics and/or prebiotics: a systemic rewiew and comment by the ESPGHAN Commitee on Nutrition. Journal of Pediatric Gastroenterology and Nutrition, 2011;52(2):238-250.

7. Bezkorovainy A. Probiotics: determinants of survival and growth in the gut. American Journal of Clinical Nutrition, 2001;73(2):399-405.

8. General report of the Scientific Committee on Food of European Commission on the revision of essential requirements of infant formulas and follow-up formulas. 2003. Available at: http://europa.en.int/comm/food/fs/sc/scf/index.en.html (Accessed at 03 July 2003).

9. Mercenier A., Pavan S., Pot B. Probiotics as biotherapeutic agents: present knowledge and future prospects. Current Pharmaceutical Design, 2003;9(2):175-191.

10. Borriello S.P., Hammes W. P., Holzapfer W., Marteau P., Schrezenmeier J., Vaara M., Valtonen V. Safety of probiotics that contain lactobacilli or bifidobacteria. Clinical Infectious Diseases, 2003;36(6):775-780.

11. Karpa KD. Probiotics for Clostridium difficile diarrhea: putting it into perspective. Annals of Pharmacotherapy, 2007, vol.41, pp.1284-1287.

12. Siciliano R.A., Reale A., Mazzeo M. F., Morandi S., Silvetti T., Brasca M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients, 2021, vol.13, pp.1225.

13. Kothari D., Patel S., Kim S. K. Probiotic supplements might not be universally effective and safe: A review. Biomedicine and Pharmacotherapy, 2019, vol.111, pp.537-547.

14. Costa R.L., Moreira J., Lorenzo A., Lamas C. C. Infectious complications following probiotic ingestion: A potentially underestimated problem? A systematic review of reports and case series. BMC Complementary and Alternative Medicine, 2018, vol.18, pp.1-8.

15. Nataraj B.H., Ali S. A., Behare P. V., Yadav H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbiology, 2020, vol.19, pp.168.

16. Lin T.L., Shu C. C., Lai W. F., Tzeng C. M., Lai H. C., Lu C. C. Investiture of next generation probiotics on amelioration of diseases - Strains do matter. Medical Microecology, 2019, vol.1, pp.100002.

17. Wilcox H., Carr C., Seney S., Reid G., Burton J. Expired probiotics: What is really in your cabinet? Research Gate, 2020, Available at: http://dx.doi.org/10.21203/rs.3.rs-34777/v1/. (Accessed at March 2020).

18. Taverniti V., Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes and Nutrition. 2011, vol.6, pp.261-274.

19. Teame T., Wang A., Xie M., Zhang Z., Yang Y., Ding Q., Gao C., Olsen R. E., Ran C., Zhou Z. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review. Frontiers of Nutrition, 2020, vol.7, pp.570344.

20. Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., Gómez-Llorente C., Gil A. Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 2012, vol.61, pp.160-174.

21. Siciliano R.A., Lippolis R., Mazzeo M. F. Proteomics for the investigation of surface-exposed proteins in probiotics. Frontiers of Nutrition, 2019, vol.6, pp.52.

22. Zawistowska-Rojek A., Tyski, S. Are probiotics really safe for humans? Polish Journal of Microbiology, 2018, vol.67, pp.251-258.

23. Chuang L., Wu K. G., Pai C., Hsieh P. S., Tsai J. J., Yen J. H., Lin M. Y. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. Journal of Agriculture and Food Chemistry, 2007, vol.55, pp.11080-11081.

24. Lopez M., Li N., Kataria J., Russell M., Neu J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease agellin induced interleukin-8 production in Caco-2 cells. Journal of Nutrition, 2008, vol.138, pp.2264-2268.

25. Jorjao A.L., de Oliveira F. E., Leao M. V.P., Carvalho C. A.T., Jorge A. O.C., de Oliveira L. D. Live and heat-killed Lactobacillus rhamnosus ATCC 7469 may induce modulatory cytokines pro les on macrophages RAW 264.7. Scientific World Journal, 2015, no.716749. doi:10.1155/2015/716749.

26. Song M.W., Jang H. J., Kim K. T., Paik H. D. Probiotic and antioxidant properties of novel Lactobacillus brevis KCCM 12203P isolated from kimchi and evaluation of immunostimulating activities of its heat-killed cells in RAW 264.7 cells. Journal of Microbiology and Biotechnology, 2019, vol.29, pp.1894-1903.

27. Castro-Herrera V.M., Rasmussen C., Wellejus A., Miles E. A., Calder P. C. In vitro effects of live and heat-inactivated Bi dobacterium animalis subsp. lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells. Nutrients, 2020, vol.12, pp.1719.

28. Kanauchi O., Andoh A., Abu Bakar S., Yamamoto N. Probiotics and paraprobiotics in viral infection: Clinical application and effects on the innate and acquired immune systems. Current Pharmaceutical Design, 2018, vol.24, pp.710-717.

29. Aiello A., Farzaneh F., Candore G., et al. Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Frontiers of Immunology, 2019, vol.10, pp.2247.

30. Wang Y., Jiang, Y., Deng Y., Yi C., Wang Y., Ding M., Liu J., Jin X., Shen L., He Y. Probiotic supplements: Hope or hype? Frontiers of Microbiology, 2020, vol.11, pp.160.

31. Aguilar-Toala J.E., Garcia-Varela R., Garcia H. S., Mata-Haro V., Gonzalez-Cordova A.F., Vallejo-Cordoba B., Hernandez-Mendoza A. Postbiotics: an evolving term within the functional foods eld. Trends of Food Science and Technology, 2018, vol.75, pp.105-114.

32. De Almada C. N., Almada C. N., Martinez R. C.R., Sant’Ana A. S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends of Food Science and Technology, 2016, vol.58, pp.96-114.

33. Barros C.P., Pires R. P.S., Guimaraes J. T., et al. Ohmic heating as a method of obtaining paraprobiotics: Impacts on cell structure and viability by ow cytometry. Food Research International, 2021, vol.140, pp.110061.

34. Patrignani F., Lanciotti R. Applications of high and ultra-high pressure homogenization for food safety. Frontiers of Microbiology, 2016, vol.7, pp.1132.

35. Pagnossa J.P., Rocchetti G., Ribeiro A. C., Piccoli R. H., Lucini L. Ultrasound: Bene cial biotechnological aspects on microorganisms-mediated processes. Current Opinion in Food Science, 2020, vol.31, pp.24-30.

36. Franz C., Specht I., Cho G.-S., Graef V., Stahl M. UV-C inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control, 2009, vol.20, pp.1103-1107.

37. Adams C. A. The probiotic paradox: Live and dead cells are biological response modi ers. Nutritional Research Review, 2010, vol.23, pp.37-46.

38. Ostad S.N., Salarian A. A., Ghahramani M. H., Fazeli M. R., Samadi N., Jamalifar H. Live and heat-inactivated lactobacilli from feces inhibit Salmonella typhi and Escherichia coli adherence to Caco-2 cells. Folia Microbiologica, 2009, vol.54, pp.157-163.

39. Singh T.P., Kaur G., Kapila S., Malik R. K. Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers of Microbiology, 2017, vol.8, pp.486.

40. Ou C.C., Lin S. L., Tsai J. J., Lin M. Y. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. Journal of Food Science, 2011, vol.76, M260-M267.

41. Ooi L.G., Liong M. T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro ndings.International Journal of Molecular Science, 2010, vol.11, pp.2499-2522.

42. Lye H.S., Alias K. A., Rusul G., Liong, M. T. Ultrasound treatment enhances cholesterol removal ability of lactobacilli. Ultrasonic Sonochemistry, 2012, vol.19, no.3, pp.632-641.

43. Tsilingiri K., Rescigno M. Postbiotics: What else? Benefit Microbes, 2013, no.4, pp.101-107.

44. Escamilla J., Lane M. A., Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutrition and Cancer, 2012, vol.64, pp.871-878.

45. Khodaii Z., Ghaderian S. M.H., Natanzi M. M. Probiotic bacteria and their supernatants protect enterocyte cell lines from enteroinvasive Escherichia coli (EIEC) invasion.International Journal of Molecular Cellular Medicine, 2017, vol.6, no.3, pp.183-189.

46. Izuddin W.I., Loh T. C., Foo H. L., Samsudin A. A., Humam A. M. Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status and upregulates the intestinal barrier function in post-weaning lambs. Scientific Reports, 2019, vol.9, no.1, pp.9938.

47. West C., Stanisz A. M., Wong A., Kunze W. A. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility. World Journal of Gastroenterology, 2016, vol.22, no.4, pp.10532-10544.

48. Canonici A., Siret C., Pellegrino E., Pontier-Bres R., Pouyet L., Montero M. P., Colin C., Czerucka D., Rigot V., Andre F. Saccharomyces boulardii improves intestinal cell restitution through activation of the alpha2beta1 integrin collagen receptor. PLoS One, 2011, vol.6, no.3, e18427.

49. Singh P., Saini P. Food and health potentials of exopolysaccharides derived from lactobacilli. Microbiology Research Journal International, 2017, vol.22, no.2, pp.1-14.

50. Makino S., Sato A., Goto A., et al. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 2016, vol.99, no.6, pp.915-923.

51. Wang J., Wu T., Fang X., Min W., Yang Z. Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu.International Journal of Biological Macromolecules, 2018, vol.115, pp.985-993.

52. Khalil E.S., Abd Manap M. Y., Mustafa S., Alhelli A. M., Shokryazdan P. Probiotic properties of exopolysaccharide-producing lactobacillus strains isolated from tempoyak. Molecules, 2018, vol.23, no.3, pp.3-6.

53. Li W., Ji J., Chen X., Jiang M., Rui X., Dong M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 2014, vol.102, pp.351-359.

54. Maeda H., Zhu X., Omura K., Suzuki S., Kitamura S. Effects of an exopolysaccharide (ke ran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 2004, vol.22, pp.197-200.

55. Brown G.D., Taylor P. R., Reid D. M., Willment J. A., Williams D. L., Martinez-Pomares L., Wong S. Y., Gordon S. Dectin-1 is a major beta-glucan receptor on macrophages. Journal of Experimental Medicine, 2002, vol.196, no.3, pp.407-412.

56. Kullisaar T., Zilmer M., Mikelsaar M., Vihalemm T., Annuk H., Kairane C., Kilk A. Two antioxidative lactobacilli strains as promising probiotics.International Journal of Food Microbiology, 2002, vol.72, pp.215-224.

57. Kim H., Chae H. S., Jeong S. G., Ham J., Im S. K., Ahn C. N., Lee J. In vitro antioxidative properties of lactobacilli. Asian Australasian Journal of Animal Science, 2006, vol.19, no.2, pp.262-265.

58. Lee C., Kim B. G., Kim J. H., Chun J., Im, J.P., Kim J. S. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner.International Immunopharmacology, 2017, vol.51, no.10, pp.47-56.

59. Luhrs H., Gerke T., Muller J. G., Melcher R., Schauber J., Boxberge F., Scheppach W., Menzel T. Butyrate inhibits NF-kappa B activation in lamina propria macrophages of patients with ulcerative colitis. Scandinavian Journal of Gastroenterology, 2002, vol.37, pp.458-466.

60. Kasahara K., Krautkramer K. A., Org E., et al.Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Natural Microbiology, 2018, vol.3, pp.1461-1471.

61. Fukuda S., Toh H., Taylor T., Ohno H., Hattori M. Acetate-producing bi dobacteria protect the hose for enteropathogenic infection via carbohydrate transporters. Gut Microbes, 2012, vol.3, pp.449-454.

62. Frost G., Sleeth M. L., Sahuri-Arisoylu M., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communities, 2014, vol.5, pp.3611.

63. Tedelind S., Westberg F., Kjerrulf M., Vidal A. Anti-in ammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to in ammatory bowel disease. World Journal of Gastroenterology, 2007, vol.13, no.20, pp.2826-2832.

64. Ahire J.J., Mokashe N. U., Patil H. J., Chaudhari B. L. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. Journal of Food Scientific Technology, 2013, vol.50, pp.26-34.

65. Mohammad M.A., Molloy A., Scott J., Hussein L. Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix.International Journal of Food Sciences and Nutrition, 2006, vol.57, pp.470-480.

66. Karl J.P., Meydani M., Barnett J. B., et al. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. American Journal of Clinical Nutrition, 2017, vol.106, pp.1052-1061.

67. Xia B., Shi X. C., Xie B. C., Zhu M. Q., Chen Y., Chu X. Y., Cai G. H., Liu M., Yang S. Z., Mitchell G. A. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biology, 2020, vol.18, no.3, e3000688.

68. Andreux P.A., Blanco-Bose W., Ryu D., Burdet F., Ibberson M., Aebischer P., Auwerx, J., Singh A., Rinsch C. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism, 2019, vol.1, pp.595-603.

69. Yoshikata R., Myint K. Z.Y., Ohta H. Effects of equol supplement on bone and cardiovascular parameters in middle-aged Japanese women: A prospective observational study. Journal of Alternative and Complementary Medicine, 2018, vol.24, no.7, pp.701-708.

70. Gou W., Fu Y., Yue L., et al. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. Research Square, 2020. doi: 10.21203/rs.3.rs-45991/v1.


Рецензия

Для цитирования:


Корниенко Е.А. Пробиотики, постбиотики и парапробиотики. Экспериментальная и клиническая гастроэнтерология. 2022;(9):240-250. https://doi.org/10.31146/1682-8658-ecg-205-9-240-250

For citation:


Kornienko E.A. Probiotics, postbiotics and paraprobiotics. Experimental and Clinical Gastroenterology. 2022;(9):240-250. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-205-9-240-250

Просмотров: 811


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)