Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Современное представление о витамине D и генетической регуляции воспаления на примере различных клинических моделей

https://doi.org/10.31146/1682-8658-ecg-203-7-192-203

Аннотация

В основе концепции настоящего обзора литературы положена научная гипотеза о том, что воспаление, являющееся основой различных заболеваний, имеет общие особенности, этапы, патофизиологически активные вещества, контролирующие активность воспалительных реакций, и общий генетический контроль. В настоящем обзоре литературы отдельные заболевания на основе ведущих патогенетических механизмов воспаления сгруппированы в несколько моделей: аутоиммунную, микробную, лимфопролиферативную, метаболическую, аллергическую. В связи со значением 25 (ОН) D для здоровья человека, его роли в патогенезе ряда заболеваний, многообразием функций и сложностью метаболизма, обусловленного полиморфизмом генов-регуляторов, с одной стороны представляется весьма актуальным мониторинг обеспеченности этим биологически активным эффектором различных групп населения, а также, своевременное выявление недостаточной обеспеченности и необходимости дополнительного приема витамина D, переходом на таргетную терапию при необходимости, а с другой стороны изучение отдельных особенностей молекулярно-генетических механизмов его влияния на течение и исход заболеваний с различными патофизиологическими механизмами воспаления.

Об авторах

Елена Владимировна Лошкова
ГБУЗ МО «НИКИ детства Министерства здравоохранения Московской области»
Россия


Елена Ивановна Кондратьева
ГБУЗ МО «НИКИ детства Министерства здравоохранения Московской области»
Россия


Нуринисо Джумаевна Одинаева
ГБУЗ МО «НИКИ детства Министерства здравоохранения Московской области»
Россия


Анатолий Ильич Хавкин
ГБУЗ МО «НИКИ детства Министерства здравоохранения Московской области»
Россия


Список литературы

1. Ying L., Zhang Y., Yin J., Wang Y., Lu W., Zhu W., Bao Y., Zhou J. Classic Type 1 Diabetes Mellitus and Fulminant Type 1 Diabetes Mellitus: Similarity and Discrepancy of Immunological Characteristics and Cytokine Profile. Diabetes Metab Syndr Obes. 2021 Nov 30;14:4661-4670. doi: 10.2147/DMSO.S334712. PMID: 34876826; PMCID: PMC8643161

2. Dinarello C. A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019 Oct; 15(10):612-632

3. Briukhovetska D., Dörr J., Endres S., Libby P., Dinarello C. A., Kobold S.Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021 Aug;21(8):481-499. doi: 10.1038/s41568-021-00363-z. Epub 2021 Jun 3. PMID: 34083781; PMCID: PMC8173513

4. Wolsk H.M., Harshfield B. J., Laranjo N., et al. Vitamin D supplementation in pregnancy, prenatal 25(OH)D levels, race, and subsequent asthma or recurrent wheeze in offspring: Secondary analyses from the Vitamin D Antenatal Asthma Reduction Trial. J Allergy Clin Immunol. 2017;140:1423-9.e5

5. Galvão A.A., de Araújo Sena F., Andrade Belitardo E. M.M., et al. Genetic polymorphisms in vitamin D pathway influence 25(OH)D levels and are associated with atopy and asthma. Allergy Asthma Clin Immunol. 2020 Jul 9;16:62. doi: 10.1186/s13223-020-00460-y. PMID: 32834827; PMCID: PMC7386242

6. Alatshan A., Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol. 2021 Feb 26;12:630569. doi: 10.3389/fimmu.2021.630569. PMID: 33717162; PMCID: PMC7952630

7. Harrison S.R., Li D., Jeffery L. E., Raza K., Hewison M. Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcif Tissue Int. 2020 Jan;106(1):58-75. doi: 10.1007/s00223-019-00577-2. Epub 2019 Jul 8. PMID: 31286174; PMCID: PMC6960236

8. Umar M., Sastry K. S., Chouchane A. I. Role of Vitamin D Beyond the Skeletal Function: A Review of the Molecular and Clinical Studies.Int J Mol Sci. 2018 May 30;19(6):1618. doi: 10.3390/ijms19061618. PMID: 29849001; PMCID: PMC6032242

9. Jaime J., Vargas-Bermúdez D.S., Yitbarek A., Reyes J., Rodríguez-Lecompte J. C. Differential immunomodulatory effect of vitamin D (1,25 (OH)2 D3) on the innate immune response in different types of cells infected in vitro with infectious bursal disease virus. Poult Sci. 2020 Sep;99(9):4265-4277. doi: 10.1016/j.psj.2020.06.006. Epub 2020 Jun 23. PMID: 32867971; PMCID: PMC7598002

10. Kazemi A., Mohammadi V., Aghababaee S. K., Golzarand M., Clark C. C.T., Babajafari S. Association of Vitamin D Status with SARS-CoV-2 Infection or COVID-19 Severity: A Systematic Review and Meta-analysis. Adv Nutr. 2021 Oct 1;12(5):1636-1658. doi: 10.1093/advances/nmab012. Erratum in: Adv Nutr. 2021 Oct 1;12(5):2040-2044. PMID: 33751020; PMCID: PMC7989595

11. Bae J.H., Choe H. J., Holick M. F., Lim S. Association of vitamin D status with COVID-19 and its severity: Vitamin D and COVID-19: a narrative review. Rev Endocr Metab Disord. 2022 Jun;23(3):579-599. doi: 10.1007/s11154-021-09705-6. Epub 2022 Jan 4. PMID: 34982377; PMCID: PMC8724612

12. EHarouni D., Yassin D., Ali N, Gohar S., Zaky I., Adwan H., Sidhom I. A Pharmacogenetic Study of VDR fok1 and TYMS Polymorphisms and Their Association With Glucocorticoid-Induced Osteonecrosis in Egyptian Children With Acute Lymphoblastic Leukemia. Front Oncol. 2018; 8:541. Epub 2018 Nov 23. doi: 10.3389/fonc.2018.00541

13. Akhter S., Kutuzova G. D., Christakos S., DeLuca H. F. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Arch Biochem Biophys. 2007 Apr 15; 460(2):227-32

14. Benn B.S., Ajibade D., Porta A., et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008 Jun; 149(6):3196-205

15. Cui M., Li Q., Johnson R., Fleet J. C. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice. J Bone Miner Res. 2012 Oct; 27(10):2097-107

16. Christakos S., Seth T., Hirsch J., Porta A., Moulas A., Dhawan P. Vitamin D biology revealed through the study of knockout and transgenic mouse models. Annu Rev Nutr. 2013;33:71-85. doi: 10.1146/annurev-nutr-071812-161249

17. Christakos S., Lieben L., Masuyama R., Carmeliet G. Vitamin D endocrine system and the intestine. Bonekey Rep. 2014 Feb 5;3:496. doi: 10.1038/bonekey.2013.230

18. Zhang W., Na T., Wu G., Jing H., Peng J. B. Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2. J Biol Chem. 2010 Nov 19;285(47):36586-96. doi: 10.1074/jbc.M110.175968

19. Gado K.H., Gado T. H., Samie R. M.A., Khalil N. M., Emam S. L., Fouad H. H. Clinical significance of vitamin D deficiency and receptor gene polymorphism in systemic lupus erythematosus patients. Egypt. Rheumatol. 2017;39:159-164. doi: 10.1016/j.ejr.2016.11.003

20. Zenata O., Vrzal R. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget. 2017 May 23;8(21):35390-35402. doi: 10.18632/oncotarget.15697

21. Zhai N., Bidares R., Makoui M. H., et al. Vitamin D receptor gene polymorphisms and the risk of the type 1 diabetes: a meta-regression and updated meta-analysis. BMC Endocr Disord. 2020 Aug 8;20(1):121. doi: 10.1186/s12902-020-00575-8. PMID: 32771009; PMCID: PMC7414991

22. Herr C., Greulich T., Koczulla R. A., et al. The role of vitamin D in pulmonary disease: COPD, asthma, infection, and cancer. Respir. Res. 2011 Mar 18;12(1):31. doi: 10.1186/1465-9921-12-31

23. Adams J.S., Ren S., Liu P. T., et al. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol. 2009 Apr 1;182(7):4289-95. doi: 10.4049/jimmunol.0803736

24. Shahmiri M., Enciso M., Adda C. G., Smith B. J., Perugini M. A., Mechler A. Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation. Sci Rep. 2016 Nov 30;6:38184. doi: 10.1038/srep38184

25. Sousa F.H., Casanova V., Findlay F., et al. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides. 2017 Sep;95:76-83. doi: 10.1016/j.peptides.2017.07.013

26. Charoenngam N., Shirvani A., Holick M. F. The ongoing D-lemma of vitamin D supplementation for nonskeletal health and bone health. Curr Opin Endocrinol Diabetes Obes. 2019 Dec;26(6):301-305. doi: 10.1097/MED.0000000000000508

27. Sharma O. P. Hypercalcemia in granulomatous disorders: A clinical review. Curr Opin Pulm Med. 2000 Sep;6(5):442-7. doi: 10.1097/00063198-200009000-00010

28. Hewison M., Kantorovich V., Liker H. R., et al. Vitamin D-mediated hypercalcemia in lymphoma: Evidence for hormone production by tumor-adjacent macrophages. J Bone Miner Res. 2003 Mar;18(3):579-82. doi: 10.1359/jbmr.2003.18.3.579

29. Shirvani A., Kalajian T. A., Song A., Holick M. F. Disassociation of Vitamin D’s Calcemic Activity and Non-calcemic Genomic Activity and Individual Responsiveness: A Randomized Controlled Double-Blind Clinical Trial. Sci Rep. 2019 Nov 27;9(1):17685. doi: 10.1038/s41598-019-53864-1

30. Széles L., Keresztes G., Töröcsik D., et al. 1,25-Dihydroxyvitamin D3 Is an Autonomous Regulator of the Transcriptional Changes Leading to a Tolerogenic Dendritic Cell Phenotype. J Immunol. 2009 Feb 15;182(4):2074-83. doi: 10.4049/jimmunol.0803345

31. Urry Z., Xystrakis E., Richards D. F., et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1alpha,25-dihydroxyvitamin D3 abrogates regulatory function. J Clin Invest. 2009 Feb;119(2):387-98. doi: 10.1172/JCI32354

32. Weeres M.A., Robien K., Ahn Y.-O., et al. The effects of 1,25-dihydroxyvitamin D3 on in vitro human NK cell development from hematopoietic stem cells. J Immunol. 2014 Oct 1;193(7):3456-62. doi: 10.4049/jimmunol.1400698

33. Ota K., Dambaeva S., Kim M. W., et al. 1,25-Dihydroxy-vitamin D3 regulates NK-cell cytotoxicity, cytokine secretion, and degranulation in women with recurrent pregnancy losses. Eur J Immunol. 2015 Nov;45(11):3188-99. doi: 10.1002/eji.201545541

34. Cantorna M.T., Zhao J., Yang L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc Nutr Soc. 2012 Feb;71(1):62-6. doi: 10.1017/S0029665111003193

35. Gibson C.C., Davis C. T., Zhu W., et al. Dietary Vitamin D and Its Metabolites Non-Genomically Stabilize the Endothelium. PLoS One. 2015 Oct 15;10(10): e0140370. doi: 10.1371/journal.pone.0140370

36. Andrukhova O., Slavic S., Zeitz U., et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014 Jan;28(1):53-64. doi: 10.1210/me.2013-1252

37. Ma R., Deng X. L., Du G. L., Li C., Xiao S., Aibibai Y., Zhu J. Active vitamin D3, 1,25-(OH)2D3, protects against macrovasculopathy in a rat model of type 2 diabetes mellitus. Genet Mol Res. 2016 Jun 3;15(2). doi: 10.4238/gmr.15028113

38. Kim D.-H., Meza C. A., Clarke H., Kim J.-S., Hickner R. C. Vitamin D and Endothelial Function. Nutrients. 2020 Feb 22;12(2):575. doi: 10.3390/nu12020575

39. Vila Cuenca M., Ferrantelli E., Meinster E., et al. Vitamin D Attenuates Endothelial Dysfunction in Uremic Rats and Maintains Human Endothelial Stability. J Am Heart Assoc. 2018 Sep 4;7(17): e008776. doi: 10.1161/JAHA.118.008776

40. He Y., Wu W., Wu S., Zheng H.-M., et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome. 2018 Sep 24;6(1):172. doi: 10.1186/s40168-018-0557-6

41. Lee C., Lau E., Chusilp S., et al. Protective effects of vitamin D against injury in intestinal epithelium. Pediatr Surg Int. 2019 Dec;35(12):1395-1401. doi: 10.1007/s00383-019-04586-y

42. Wang T.-T., Dabbas B., Laperriere D., et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. 2010 Jan 22;285(4):2227-31. doi: 10.1074/jbc.C109.071225

43. Zhang Y.-G., Wu S., Sun J. Vitamin D, Vitamin D Receptor, and Tissue Barriers. Tissue Barriers. 2013 Jan 1;1(1): e23118. doi: 10.4161/tisb.23118

44. Su D., Nie Y., Zhu A., Chen Z., et al. Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Front Physiol. 2016 Nov 15;7:498. doi: 10.3389/fphys.2016.00498

45. Fakhoury H.M.A., Kvietys P. R., AlKattan W., et al. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. Front Physiol. 2016 Nov 15;7:498. doi: 10.3389/fphys.2016.00498

46. Chakaroun R.M., Massier L., Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients. 2020 Apr 14;12(4):1082. doi: 10.3390/nu12041082

47. Khan M.F., Wang H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front Immunol. 2020 Jan 10;10:3094. doi: 10.3389/fimmu.2019.03094

48. Kongsbak M., von Essen M. R., Levring T. B., et al. Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol. 2014 Sep 18;15:35. doi: 10.1186/s12865-014-0035-2

49. Cantorna M.T., Snyder L., Lin Y. D., Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015 Apr 22;7(4):3011-21. doi: 10.3390/nu7043011

50. Tang J., Zhou R., Luger D., et al. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol. 2009 Apr 15;182(8):4624-32. doi: 10.4049/jimmunol.0801543

51. Mocanu V., Oboroceanu T., Zugun-Eloae F. Current status in vitamin D and regulatory T cells - immunological implications. Rev Med Chir Soc Med Nat Iasi. 2013 Oct-Dec;117(4):965-73. PMID: 24502077

52. Kongsbak M., Levring T. B., Geisler C., von Essen M. R. The vitamin d receptor and T cell function. Front Immunol. 2013 Jun 18;4:148. doi: 10.3389/fimmu.2013.00148

53. Sarkar S., Hewison M., Studzinski G. P., Li Y. C., Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci. 2016;53(2):132-45. doi: 10.3109/10408363.2015.1094443

54. Mao X., Hu B., Zhou Z., et al. Vitamin D levels correlate with lymphocyte subsets in elderly patients with age-related diseases. Sci Rep. 2018 May 16;8(1):7708. doi: 10.1038/s41598-018-26064-6

55. Eckard A.R., O’Riordan M.A., Rosebush J. C., et al. Vitamin D supplementation decreases immune activation and exhaustion in HIV-1-infected youth. Antivir Ther. 2018;23(4):315-324. doi: 10.3851/IMP3199

56. Stallings V.A., Schall J. I., Hediger M. L., et al. High-dose vitamin D3 supplementation in children and young adults with HIV: A randomized, placebo-controlled trial. Pediatr Infect Dis J. 2015 Feb;34(2): e32-40. doi: 10.1097/INF.0000000000000483

57. Chen S., Sims G. P., Chen X. X., Gu Y. Y., Chen S., Lipsky P. E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007 Aug 1;179(3):1634-47. doi: 10.4049/jimmunol.179.3.1634

58. Geldmeyer-Hilt K., Heine G., Hartmann B., Baumgrass R., Radbruch A., Worm M. 1,25-dihydroxyvitamin D3 impairs NF-kappaB activation in human naive B cells. Biochem Biophys Res Commun. 2011 Apr 22;407(4):699-702. doi: 10.1016/j.bbrc.2011.03.078

59. Shirakawa A.K., Nagakubo D., Hieshima K., Nakayama T., Jin Z., Yoshie O. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells. J Immunol. 2008 Mar 1;180(5):2786-95. doi: 10.4049/jimmunol.180.5.2786

60. Yamamoto E.A., Nguyen J. K., Liu J., et al. Low Levels of Vitamin D Promote Memory B Cells in Lupus. Nutrients. 2020 Jan 22;12(2):291. doi: 10.3390/nu12020291

61. EHarouni D., Yassin D., Ali N, Gohar S., Zaky I., Adwan H., Sidhom I. A Pharmacogenetic Study of VDR fok1 and TYMS Polymorphisms and Their Association With Glucocorticoid-Induced Osteonecrosis in Egyptian Children With Acute Lymphoblastic Leukemia. Front Oncol. 2018; 8:541. Epub 2018 Nov 23. doi: 10.3389/fonc.2018.00541

62. Himes B.E., Koziol-White C., Johnson M., et al. Vitamin D Modulates Expression of the Airway Smooth Muscle Transcriptome in Fatal Asthma. PLoS One. 2015 Jul 24;10(7): e0134057. doi: 10.1371/journal.pone.0134057. PMID: 26207385; PMCID: PMC4514847

63. Hawrylowicz C., Richards D., Loke T. K., Corrigan C., Lee T. A defect in corticosteroid-induced IL-10 production in T lymphocytes from corticosteroid-resistant asthmatic patients. J Allergy Clin Immunol. 2002 Feb;109(2):369-70. doi: 10.1067/mai.2002.121455

64. Nanzer A.M., Chambers E. S., Ryanna K., et al. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1α,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. J Allergy Clin Immunol. 2013 Aug;132(2):297-304.e3. doi: 10.1016/j.jaci.2013.03.037

65. Banerjee A., Damera G., Bhandare R., Gu S., Lopez-Boado Y., Panettieri R. Jr., Tliba O. Vitamin D and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells. Br J Pharmacol. 2008 Sep;155(1):84-92. doi: 10.1038/bjp.2008.232

66. Agrawal T., Gupta G. K., Agrawal D. K. Calcitriol decreases expression of importin α3 and attenuates RelA translocation in human bronchial smooth muscle cells. J Clin Immunol. 2012 Oct;32(5):1093-103. doi: 10.1007/s10875-012-9696-x

67. Damera G., Fogle H. W., Lim P., et al. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. Br J Pharmacol. 2009 Nov;158(6):1429-41. doi: 10.1111/j.1476-5381.2009.00428.x

68. Adegoke S.A., Smith O. S., Adekile A. D., Figueiredo M. S. Relationship between serum 25-hydroxyvitamin D and inflammatory cytokines in paediatric sickle cell disease. Cytokine. 2017 Aug;96:87-93. doi: 10.1016/j.cyto.2017.03.010. Epub 2017 Apr 5. PMID: 28390266

69. Saheb Sharif-Askari F., Saheb Sharif-Askari N., Halwani R., Abusnana S., Hamoudi R., Sulaiman N. Low Vitamin D Serum Level Is Associated with HDL-C Dyslipidemia and Increased Serum Thrombomodulin Levels of Insulin-Resistant Individuals. Diabetes Metab Syndr Obes. 2020 May 12;13:1599-1607. doi: 10.2147/DMSO.S245742. PMID: 32494176; PMCID: PMC7231785

70. Lara-Reyna S., Holbrook J., Jarosz-Griffiths H.H., Peckham D., McDermott M. F. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci. 2020 Nov;77(22):4485-4503. doi: 10.1007/s00018-020-03540-9. Epub 2020 May 4. PMID: 32367193; PMCID: PMC7599191

71. Li B., Haridas B., Jackson A. R., et al. Inflammation drives renal scarring in experimental pyelonephritis. Am J Physiol Renal Physiol. 2017 Jan 1;312(1): F43-F53. doi: 10.1152/ajprenal.00471.2016

72. Delbue D., Cardoso-Silva D., Branchi F., Itzlinger A., Letizia M., Siegmund B., Schumann M. Celiac Disease Monocytes Induce a Barrier Defect in Intestinal Epithelial Cells.Int J Mol Sci. 2019 Nov 9;20(22):5597. doi: 10.3390/ijms20225597. PMID: 31717494; PMCID: PMC6888450


Рецензия

Для цитирования:


Лошкова Е.В., Кондратьева Е.И., Одинаева Н.Д., Хавкин А.И. Современное представление о витамине D и генетической регуляции воспаления на примере различных клинических моделей. Экспериментальная и клиническая гастроэнтерология. 2022;(7):192-203. https://doi.org/10.31146/1682-8658-ecg-203-7-192-203

For citation:


Loshkova E.V., Kondratyeva E.I., Odinaeva N.D., Khavkin A.I. Modern understanding of vitamin D and the genetic regulation of inflammation in various clinical models. Experimental and Clinical Gastroenterology. 2022;(7):192-203. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-203-7-192-203

Просмотров: 276


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)