Risk factors for various clinical variants of irritable bowel syndrome
https://doi.org/10.31146/1682-8658-ecg-201-5-39-48
Abstract
Introduction. Irritable bowel syndrome (IBS) affects a significant portion of the population worldwide. The disease is characterized by a multifactorial pathogenesis and a variable clinical picture, in the center of which is abdominal pain and violations of the act of defecation. Our work shows the relationship between the functional polymorphism of the serotonin reuptake transporter (5-HTTLPR of the SLC6A4 gene) and the features of myoelectric activity (MEA) of the small intestine in various clinical variants of IBS.
Purpose — to study clinical, functional and genetic features in patients with IBS and on their basis to determine significant risk factors for the formation of various IBS variants.
Materials and methods. 148 patients were examined: 79 patients with IBS (group 1), including 45 patients with IBS with a predominance of diarrhea (group 1a) and 34 patients with IBS with a predominance of diseases (group 1b), 10 healthy volunteers (group 2), 59 patients of therapeutic profile without IBS (group 3). The diagnosis of “IBS” was established according to the Rome criteria III revision. All of them thoroughly studied peripheral electrogastroenterography (PEGEG) and groups of patients 1 and 3 — genetic analysis of the 5-HTTLPR polymorphism of the SLC6A4 gene.
Results. In the diarrheal variant of IBS, the 5-HTTLPR promoter more often contains the S allele associated with a decrease in the function of the serotonin reuptake transporter. The risk factors for the formation of clinical variants of IBS include: gender, polymorphic variants of the 5-HTTLPR gene SLC6A4 and the values of the postprandial coefficient of myoelectric activity (MEA) at the frequencies of “ileum” and “jejunum”.
Conclusions. The revealed relationships between the motor-evacuation function (MEF) of the gastrointestinal tract and polymorphism of the serotonin transporter gene demonstrate the pathophysiological significance of these associations in the development of IBS and its clinical variability. Features of the functioning and genetic features of the serotonergic system deserve further study, which is promising for improving the diagnostic and therapeutic approach to patients with IBS.
About the Authors
A. V. PushkinaRussian Federation
Anna V. Pushkina, teaching staff in Department of Propaedeutics of Internal Diseases, Gastroenterology and Dietetics named after S. M. Ryss
SPIN: 5393–3864
191015, St. Petersburg
E. B. Avalueva
Russian Federation
Elena B. Avalueva, MD, Doctor of Medical Sciences, professor in Department of Propaedeutics of Internal Diseases
191015, St. Petersburg
I. G. Bakulin
Russian Federation
Igor G. Bakulin, MD, Doctor of Medical Sciences, Professor, Head of Department of Propaedeutics of Internal Diseases, Gastroenterology and Dietetics named after S. M. Ryss
191015, St. Petersburg
A. A. Topanova
Russian Federation
Aleksander A. Topanova, Candidate of Medical Sciences, Deputy Director of the Institute of medical education for educational and social work
197341, St. Petersburg, Akkuratova St., 2
K. A. Klikunova
Russian Federation
Kseniya A. Klikunova, PhD, Associate Professor of the Department of Medical Physics
194100, St. Petersburg
I. V. Lapinskii
Russian Federation
Igor V. Lapinskii, PhD, teaching staff in Department of Propaedeutics of Internal Diseases, Gastroenterology and Dietetics named after S. M. Ryss
191015, St. Petersburg
S. I. Sitkin
Russian Federation
Stanislav I. Sitkin, Dr. med., PhD, Associate Professor of the Department of Internal Medicine Propaedeutics, Gastroenterology and Dietetics n. a. S. M. Ryss; Head of the Epigenetics & Metagenomics Research Group of the Institute of Perinatology and Pediatrics
Scopus ID: 6603071466
191015, St. Petersburg
197341, St. Petersburg, Akkuratova St., 2
References
1. Sperber A. D., Bangdiwala S. I., Drossman D. A., et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology, 2021, vol. 160, no. 1, pp. 99–114. doi:10.1053/j.gastro.2020.04.014
2. Tang Y. R., Yang W. W., Liang M. L., et al. Age‒related symptom and life quality changes in women with irritable bowel syndrome. World J Gastroenterol, 2012, vol. 18, no. 48, pp. 7175–7183. doi:10.3748/wjg.v18.i48.7175.
3. Staller K., Olén O., Söderling J., Roelstraete B. Risk in Irritable Bowel Syndrome: Results From a Nationwide Prospective Cohort Study. Am J Gastroenterol, 2020, vol. 115, no. 5, pp. 746‒755. doi:10.14309/ajg.0000000000000573.
4. Tack J., Stanghellini V., Mearin F., et al. Economic burden of moderate to severe irritable bowel syndrome with constipation in six European countries. BMC Gastroenterol, 2019, vol. 19, no. 1, pp. 69. doi:10.1186/s12876–019–0985–1.
5. Bellini M., Gambaccini D., Stasi C., et al. Irritable bowel syndrome: a disease still searching for pathogenesis, diagnosis and therapy. World J Gastroenterol, 2014, vol. 21, no. 27, pp. 8807–8820. doi:10.3748/wjg.v20.i27.8807.
6. Drossman D. A. Functional gastrointestinal disorders: what’s new for Rome IV? Lancet Gastroenterol Hepatol, 2016, vol. 1, no. 1, pp. 6–8. doi:10.1016/S2468–1253(16)30022-X.
7. Mulak A., Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit, 2004, vol. 10, no. 4, pp. 55–62.
8. Crowell M. D. Role of serotonin in the pathophysiology of the irritable bowel syndrome. British Journal of Pharmacology, 2004, vol. 141, no. 8, pp. 1285–1293. doi:10.1038/sj.bjp.0705762
9. Gershon M. D. 5‒Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes, 2013, vol. 20, no. 1, pp. 14‒21. doi:10.1097/MED.0b013e32835bc703
10. Katinios G., Casado‒Bedmar M., Walter S. A., et al. Increased Colonic Epithelial Permeability and Mucosal Eosinophilia in Ulcerative Colitis in Remission Compared With Irritable Bowel Syndrome and Health. Inflamm Bowel Dis, 2020, vol. 26, no 7, pp. 974‒984. doi:10.1093/ibd/izz328.
11. Krop M., Ozunal Z. G., Chai W., et al. Mast cell degranulation mediates bronchoconstriction via serotonin and not via renin release. Eur J Pharmacol, 2010, vol. 640, no 1–3, pp. 185–189. doi:10.1016/j.ejphar.2010.04.058.
12. Sikander A., Rana S. V., Prasad K. K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta, 2009, vol.403, no 1‒2, pp. 47‒55.
13. Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS?. J Biomed Sci, 2020, vol. 27, no. 1, pp. 95. doi:10.1186/s12929–020–00688–1
14. Koopman N., Katsavelis D., Hove A., et al. The Multifaceted Role of Serotonin in Intestinal Homeostasis. Int. J. Mol. Sci, 2021, vol. 22, no. 17, pp. 9487 doi:10.3390/ijms22179487
15. Lu C. L., Hsieh J. C., Dun N. J., et al. Estrogen rapidly modulates 5‒hydroxytrytophan‒induced visceral hypersensitivity via GPR30 in rats. Gastroenterology, 2009, vol. 137, pp. 1040‒1050.
16. Bazarganipour F., Taghavi S. A., Asemi Z., et al. The impact of irritable bowel syndrome on health‒related quality of life in women with polycystic ovary syndrome. Health Qual Life Outcomes, 2020, vol. 18, no. 1, pp. 226.
17. Marshall J. K., Thabane M., Borgaonkar M. R., et al. Postinfectious irritable bowel syndrome after a foodborne outbreak of acute gastroenteritis attributed to a viral pathogen. Clin Gastroenterol Hepatol, 2007, vol. 5, pp. 457–460.
18. Makker J., Chilimuri S., Bella J. N. Genetic epidemiology of irritable bowel syndrome. World J Gastroenterol, 2015, vol. 21, no. 40, pp. 11353–61. doi:10.3748/wjg.v21.i40.11353.
19. Lee J. Y., Kim N., Park J. H., et al. Expression of Neurotrophic Factors, Tight Junction Proteins, and Cytokines According to the Irritable Bowel Syndrome Subtype and Sex. J Neurogastroenterol Motil, 2020, vol. 30, no. 26, pp. 106–116.
20. Mulak A., Taché Y. Sex difference in irritable bowel syndrome: do gonadal hormones play a role. Gastroenterol Pol, 2010, vol. 17, no. 2, pp. 89–97.
21. Saito Y. A. The role of genetics in IBS. Gastroenterol Clin North Am, 2011, vol. 40, no. 1, pp. 45–67. doi:10.1016/j.gtc.2010.12.011.
22. Zhao J. H., Dong L., Hao X. Q Small intestine motility and gastrointestinal hormone levels in irritable bowel syndrome. Journal of Southern Medical University, 2007, vol. 27, no. 10, pp. 1492–1495.
23. Barnes N. M., Ahern G. P., Becamel P. C., et al. International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5‒hydroxytryptamine. Pharmacology and Function Pharmacological Reviews, 2021, vol. 73, no. 1, pp. 310‒520.
24. Herr N., Bode C., Duerschmied D. The Effects of Serotonin in Immune Cells. Front Cardiovasc Med, 2017, vol. 4, no. 48. doi:10.3389/fcvm.2017.00048.
25. Heils A., Teufel A., Petri S., et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem, 1996, vol. 66, pp. 2621–2624.
26. Ramamoorthy S., Bauman A. L., Moore K. R., et al. Antidepressant ‒ and cocaine‒sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA, 1993, vol. 90, no. 6, pp. 2542‒2546.
27. Yeo A., Boyd P., Lumsden S., et al. Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut, 2004, vol. 53, no. 10, pp. 1452–1458.
28. Vahora I. S., Tsouklidis N., Kumar R., et al. How Serotonin Level Fluctuation Affects the Effectiveness of Treatment in Irritable Bowel Syndrome. Cureus, 2020, vol. 12, no. 9. doi:10.7759/cureus.9871.
29. Pushkina A.V., Avalueva E . B., Bakulin I. G., Topanova A. A., Murzina A. A., Sitkin S. I., Lapinsky I. V., Skazyvaeva E. V. Functional polymorphism of the serotonin reuptake transporter SLC6A4 gene in various clinical variants of irritable bowel syndrome. Almanac of Clinical Medicine. 2019;47(6):496–504. (in Russ.) doi:10.18786/2072–0505–2019–47–072
30. Jia Z., Wang L., Yu B., et al. Association between polymorphisms in the serotonin transporter gene‒linked polymorphic region and risk for irritable bowel syndrome in China: evidence based on a meta‒analysis. J Int Med Res, 2019, vol. 47, no. 7, pp. 2810‒2818.
31. Haub S., Ritze Y., Bergheim I., et al. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol Motil, 2010, vol. 22, no. 7, pp. 826–834. doi:10.1111/j.1365–2982.2010.01479.x.
32. Lapinskiy I.V., Avalueva E. B., Oganezova I. A., Skazyvaeva E. V., Pushkina A. V. Digestive Motility Disorders in Nonalcoholic Fatty Liver Disease. Doctor. Ru. 2019; 3(158): 15–20. (in Russ.) doi:10.31550/1727–2378–2019–158–3–15–20
33. Pae C. U., Masand P. S., Ajwani N., et al. Irritable bowel syndrome in psychiatric perspective: A comprehensive review. International Journal of Clinical Practice, 2007, vol. 6, no. 1, pp. 1708–1718
34. Kim D. Y., Camilleri M. Serotonin: A mediator of the brain-gut connection. American Journal of Gastroenterology, 2000, vol. 95, pp. 2698–2709.
35. Erspamer V. Pharmacology of indole-alkylamines. Pharmacol Rev, 1954, vol. 6, no. 4, pp. 425–487.
36. Alyce M. M., Young R. L., Leong L., et al. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology, 2017, vol. 158, no. 5, pp. 1049–1063. doi:10.1210/en.2016–1839
37. Raghupathi R., Duffield M. D., Zelkas L., et al. Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J Physiol, 2013, vol. 591, no. 23, pp. 5959–5975/.
38. Kidd M., Gustafsson B. I., Drozdov I., Modlin I. M. IL1beta- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil, 2009, vol. 21, no. 4, pp. 439–450.
39. Kidd M., Modlin I. M., Eick G. N., Champaneria M. C. Isolation, functional characterization, and transcriptome of Mastomys ileal enterochromaffin cells. Am J Physiol Gastrointest Liver Physiol, 2006, vol. 291, no. 5, pp. 778–791.
40. Modlin I. M., Kidd M., Pfragner R., et al. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab, 2006, vol. 91 no. 6, pp. 2340–2348.
41. Yano J. M., Yu K., Donaldson G. P., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, vol. 161, no. 2, pp. 264–276. doi:10.1016/j.cell.2015.02.047
42. Liu N., Sun S., Wang P., et al. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci, 2021, vol. 22, no. 15, pp. 7931. doi:10.3390/ijms22157931
43. Hammerle C. W., Surawicz C. M. Updates on treatment of irritable bowel syndrome. World J Gastroenterol, 2008, vol. 141, no. 7, pp. 2639–2649.
44. Spohn S. N., Mawe G. M. Non-conventional features of peripheral serotonin signalling – the gut and beyond. Nat Rev Gastroenterol Hepatol, 2017, vol. 14, no. 7, pp. 412–420. doi:10.1038/nrgastro.2017.51.
45. Lychkova A. E. Serotoninergic regulation of colonic motor function. Terapevticheskii Arkhiv. 2013;85(2):89–92. (In Russ.)
46. Hoffman J. M., Tyler K., MacEachern S. J., et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology, 2012, vol. 142, no. 4, pp. 844–854.
47. Sun W. H., Su Y. S. Roles of 5-HT2B Receptor in Pain. 5-HT2B Receptors, 2021, vol. 35, pp. 143–152. doi:10.1007/978–3–030–55920–58
Review
For citations:
Pushkina A.V., Avalueva E.B., Bakulin I.G., Topanova A.A., Klikunova K.A., Lapinskii I.V., Sitkin S.I. Risk factors for various clinical variants of irritable bowel syndrome. Experimental and Clinical Gastroenterology. 2022;(5):39-48. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-201-5-39-48