Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Роль кишечной микробиоты в развитии пищевой аллергии

https://doi.org/10.31146/1682-8658-ecg-196-12-94-101

Полный текст:

Аннотация

В обзорной статье представлены современные данные о возможной связи между возникновением аллергии и нарушениями в составе микробиоты кишечника. Обсуждается роль кишечной микробиоты в становлении иммунной системы ребёнка, а также поддержании его иммунной толерантности. Рассмотрены факторы, воздействие которых может быть связано с изменениями в микробиоте кишечника и развитием аллергических заболеваний.

Об авторах

К. А. Айтбаев
Научно-исследовательский институт молекулярной биологии и медицины
Кыргызстан

Айтбаев Кубаныч Авенович, д. м. н., профессор., зав. лабораторией патологической физиологии

г. Бишкек



И. Т. Муркамилов
Кыргызская государственная медицинская академия им. И. К. Ахунбаева
Кыргызстан

Муркамилов Илхом Торобекович, к. м. н., и. о. доцента, врач-нефролог; Председатель правления общество специалистов по хронической болезни почек

г. Бишкек



Ж, А. Муркамилова
Кыргызско-Российский Славянский университет им. первого Президента России Б. Н. Ельцина
Кыргызстан

Муркамилова Жамила Абдилалимовна, заочный аспирант, врач-терапевт

г. Бишкек



В. В. Фомин
ФГАОУ ВО Первый Московский государственный медицинский университет им. И. М. Сеченова (Сеченовский Университет)
Россия

Фомин Виктор Викторович, д. м. н., профессор., член-корр. РАН, проректор по научно-исследовательской и клинической работе; зав. каф. факультетской терапии № 1. Главный внештатный специалист общей врачебной практики Департамента здравоохранения города Москвы

119048, г. Москва, ул. Трубецкая, д. 8/1



Список литературы

1. Strachan D. P. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–1260. PMID:2513902.

2. Penders J., Gerhold K., Stobberingh E. E., et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol. 2013;132(3):601–607. doi:10.1016/j.jaci.2013.05.043.

3. Fagarasan S., Honjo T. Intestinal IgA synthesis: Regulation of front-line body defences. Nat.Rev.Immunol. 2003; 3:1:63–72.

4. Bemark M., Boysen P., Lycke N. Y. Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Ann.N.Y.Acad.Sci. 2012;1247:97–116. doi:10.1111/j.1749–6632.2011.06378.x.

5. Berin M. C. Mucosal antibodies in the regulation of tolerance and allergy to foods. Semin.Immunopathol. 2012; 34:5:633–642.

6. Frossard C.P., Hauser C., Eigenmann P. A. Antigenspecific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J. Allerg Clin.Immunol. 2004;114:2:377–382. doi:10.1016/j.jaci.2004.03.040.

7. Janzi M., Kull I., Sjoberg R., et al. Selective IgA deficiency in early life: Association to infections and allergic diseases during childhood. Clin.Immunol. 2009;133:1:78–85. doi:10.1016/j.clim.2009.05.014.

8. Macpherson A.J., Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004; 303: 5664:1662–1665. doi:10.1126/science.1091334.

9. Groisman E.A., Parra-Lopez C., Salcedo M., et al. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc.Nat.Acad.Sci.USA. 1992;89:24:11939–11943. doi:10.1073/pnas.89.24.11939.

10. Kostic A.D., Howitt M. R., Garrett W. S. Exploring host-microbiota interactions in animal models and humans. Gene. Dev. 2013; 27:7:701–718. doi:10.1101/gad.212522.112.

11. Sudo N., Sawamura S., Tanaka K., et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 1997;159:4:1739–1745.

12. Hrncir T., Stepankova R., Kozakova H., et al. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: Studies in germ-free mice. BMC Immunol. 2008;9:1:65. doi:10.1186/1471–2172–9–65.

13. Mazmanian S.K., Liu C. H., Tzianabos A. O., Kasper D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:1:107–118. doi:10.1016/j.cell.2005.05.007.

14. Bauer H., Horowitz R. E., Levenson S. M., Popper H. The response of the lymphatic tissue to the microbialflora. Studies on germfree mice. Amer.J.Pathol. 1963;42:4:471–483. PMID:13966929.

15. Prescott S.L., Macaubas C., Holt B. J., et al. Transplacental priming of the human immune system to environmental allergens: Universal skewing of initial T cell responses toward the Th2 cytokine profile. J. Immunol. 1998;160:10:730–4737.

16. Round J.L., Mazmanian S. K. Inducible foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc.Nat.Acad.Sci.USA. 2010;107:27:12204–12209. doi:10.1073/pnas.0909122107.

17. Hooper L.V., Gordon J. I. Commensal host-bacterial relationships in the gut. Science. 2001; 292:5519:1115–1118. doi:10.1126/science.1058709.

18. Jakobsson H.E., Abrahamsson T. R., Jenmalm M. C., et al. Decreased gut microbiota diversity, delayed bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014; 63(4):559–566. doi:10.1136/gutjnl-2012–303249.

19. Hooper L.V., Littman D. R., Macpherson A. J. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–1273. doi:10.1126/science.1223490.

20. Chahine B.G., Bahna S. L. The role of the gut mucosal immunity in the development of tolerance versus development of allergy to food. Current Opinion in Allergy and Clinical Immunology. 2010;10(4):394–399. doi:10.1097/ACI.0b013e32833982ab.

21. Riedler J., Braun-Fahrlander C., Eder W., et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001;358(9288):1129–1133. doi:10.1016/S0140–6736(01)06252–3.

22. Alfven T., Braun-Fahrlander C., Brunekreef B., et al. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle – the PARSIFAL study. Allergy. 2006; 61(4):414–421. doi:10.1111/j.1398–9995.2005.00939.x.

23. Genuneit J., Strachan D. P., Buchele G., et al. The combined effects of family size and farm exposure on childhood hay fever and atopy. Pediatr Allergy Immunol. 2013;24(3):293–298. doi:10.1111/pai.12053.

24. Gosalbes M.J., Llop S., Valles Y., et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211. doi:10.1111/cea.12063.

25. Douwes J., Cheng S., Travier N., et al. Farm exposure in utero may protect against asthma, hay fever and eczema. European Respiratory Journal. 2008;32(3):603–611. doi:10.1183/09031936.00033707.

26. Ege M.J., Mayer M., Normand A-C., et al. Exposure to Environmental Microorganisms and Childhood Asthma. N. Engl. J. Med. 2011;364:701–709. doi:10.1056/NEJMoa1007302.

27. Abrahamsson T.R., Jakobsson H. E., Andersson A. F., et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–850. doi:10.1111/cea.12253.

28. Bisgaard H., Li N., Bonnelykke K., et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646–652. doi:10.1016/j.jaci.2011.04.060.

29. Abrahamsson T.R., Jakobsson H. E., Andersson A. F., et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434– 440. doi:10.1016/j.jaci.2011.10.025.

30. Fujimura K.E., Johnson C. C., Ownby D. R., et al. Man’s best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol. 2010;126(2):410–412. doi:10.1016/j.jaci.2010.05.042.

31. Azad M.B., Konya T., Maughan H., et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol. 2013; 9(1):15.

32. Wegienka G., Johnson C. C., Havstad S., et al. Lifetime dog and cat exposure and dog- and cat-specific sensitization at age 18 years. Clin Exp Allergy. 2011;41(7):979–986. doi:10.1111/j.1365–2222.2011.03747.x.

33. van Nimwegen F. A., Penders J., Stobberingh E. E., et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011; 128(5):948–955. doi:10.1016/j.jaci.2011.07.027.

34. Ege M.J., Bieli C., Frei R., et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol. 2006;117(4):817–823. doi:10.1016/j.jaci.2005.12.1307.

35. Stern D.A., Riedler J., Nowak D., et al. Exposure to a farming environment has allergen-specific protective effects on TH2-dependent isotype switching in response to common inhalants. J Allergy Clin Immunol. 2007;119(2):351–358. doi:10.1016/j.jaci.2006.10.013.

36. Biasucci G., Rubini M., Riboni S., et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86(Suppl1):13–15. doi:10.1016/j.earlhumdev.2010.01.004.

37. Dominguez-Bello M.G., Costello E. K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences. 2010;107(26):11971–11975. doi:10.1073/pnas.1002601107.

38. Jakobsson H.E., Abrahamsson T. R., Jenmalm M. C., et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–566. doi:10.1136/gutjnl-2012–303249.

39. Karmaus W., Botezan C. Does a higher number of siblings protect against the development of allergy and asthma? A review. J Epidemiol Community Health. 2002;56(3):209–217. doi:10.1136/jech.56.3.209.

40. Verani J.R., McGee L., Schrag S. J. Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease – revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010; 59(RR-10):1–36.

41. Bennet R., Eriksson M., Nord C. E., Zetterstrom R. Fecal bacterial microflora of newborn infants during intensive care management and treatment with five antibiotic regimens. Pediatr Infect Dis. 1986;5(5):533–539.

42. Greenwood C., Morrow A. L., Lagomarcino A. J., et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165(1):23–29. doi:10.1016/j.jpeds.2014.01.010.

43. Fouhy F., Guinane C. M., Hussey S., et al. Highthroughput sequencing reveals the incomplete, shortterm recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012;56(11):5811–5820. doi:10.1128/AAC.00789–12.

44. Zivkovic A . M., German J. B., Lebrilla C . B., Mills D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA. 2011;108 (Suppl 1):4653–4658. doi:10.1073/pnas.1000083107.

45. Benno Y., Sawada K., Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol. 1984;28(9):975–986. doi:10.1111/j.1348–0421.1984.tb00754.x.

46. Devereux G. The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol. 2006;6(11):869–874.

47. Wu G.D., Chen J., Hoffmann C., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:6052:105–108. doi:10.1126/science.1208344.

48. Trompette A., Gollwitzer E. S., Yadava K., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014; 20(2):159–166.

49. Ling Z., Li Z., Liu X., et al. Altered fecal microbiota composition associated with food allergy in infants. Applied and environmental microbiology. 2014;80:2546–2554. doi:10.1128/AEM.00003–14.

50. Hua X., Goedert J. J., Pu A., et al. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine. 2016;3:172–179. doi:10.1016/j.ebiom.2015.11.038.

51. Round J.L., Mazmanian S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:27:12204–12209. doi:10.1073/pnas.0909122107.

52. Azad M.B., Konya T., Guttman D. S., et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2015;45:3:632–643. doi:10.1111/cea.12487.

53. Wang M., Karlsson C., Olsson C., et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. The Journal of allergy and clinical immunology. 2008;121:1:129–134. doi:10.1016/j.jaci.2007.09.011

54. Fieten K.B., Totte J. E.E., Levin E., et al. Fecal Microbiome and Food Allergy in Pediatric Atopic Dermatitis: A Cross-Sectional Pilot Study. Int. Arch. Allergy Immunol. 2018;175(1–2):77–84. doi:10.1159/000484897.

55. Blazquez A.B., Berin M. C. Microbiome and Food Allergy. Transl. Res. 2017;179:199–203. doi:10.1016/j.trsl.2016.09.003


Рецензия

Для цитирования:


Айтбаев К.А., Муркамилов И.Т., Муркамилова Ж.А., Фомин В.В. Роль кишечной микробиоты в развитии пищевой аллергии. Экспериментальная и клиническая гастроэнтерология. 2021;(12):94-101. https://doi.org/10.31146/1682-8658-ecg-196-12-94-101

For citation:


Aitbaev K.A., Murkamilov I.T., Murkamilova Z.A., Fomin V.V. The role of the intestinal microbiota in the development of food allergy. Experimental and Clinical Gastroenterology. 2021;(12):94-101. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-196-12-94-101

Просмотров: 142


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)