Preview

Experimental and Clinical Gastroenterology

Advanced search

Chemomicrobiome analysis of the ornithine molecule

https://doi.org/10.31146/1682-8658-ecg-194-10-126-131

Abstract

Hepatoprotectors and prebiotic molecules that promote the growth of intestinal flora differ significantly in their effects on different representatives of the human microbiome. This work presents the results of a comparative chemomicrobiomic analysis of ornithine and reference molecules (S-ademetionine, ursodeoxycholic acid, lactulose, and fructose). For each of the studied molecules, estimates of the values of the area under the growth curve were obtained for a representative sample of human microbiota, which included 38 commensal bacteria (including bifidobacteria and lactobacilli) and the values of the minimum inhibitory concentrations (MIC) for 152 strains of pathogenic bacteria. It has been shown that ornithine, to a lesser extent than the reference molecules, stimulates the growth of pathogenic bacteria of the genera Aspergillus, Klebsiella, Pseudomonas, Staphylococcus and Candida fungi. Ornithine is also less likely to stimulate the growth of more aggressive bacteria (Biosafety Level 2) and to a greater extent less aggressive bacteria (Biosafety Level 1). By stimulating butyric and other short-chain fatty acid-producing microorganisms, ornithine can improve the profile of gut microbiota.

About the Authors

I. Yu. Torshin
Federal Research Center “Informatics and Control” RAS (FRC IU RAS); Northern State Medical University of the Ministry of Health of Russia
Russian Federation

Ivan Yu. Torshin - PhD in Chemistry, senior research fellow at the Institute of Pharmacoinformatics.

Vavilova st., 44, building 2, Moscow 119333; 163000, Arkhangelsk, Troitsky pr., 51.



O. A. Gromova
Federal Research Center “Informatics and Control” RAS (FRC IU RAS); Northern State Medical University of the Ministry of Health of Russia
Russian Federation

Olga A. Gromova - MD, PhD, DSc, professor, leading research fellow, research director of the Institute of Pharmacoinformatics.

Vavilova st., 44, building 2, Moscow 119333; 163000, Arkhangelsk, Troitsky pr., 51.



V. A. Maksimov
Russian Medical Academy of Continuing Professional Education
Russian Federation

Valery A. Maksimov - Doctor of Medical Sciences, Professor of the Department of Dietetics and Nutritionology.

Barrikadnaya st., 2, building 1, Moscow 123995.



References

1. Gromova O. A., Torshin I. Yu., Lazebnik L. B., Maksimov V. A. Systematic computer analysis of ornithine research to identify the most promising trends in therapeutic use - focus on liver function. Experimental and Clinical Gastroenterology. 2021;191(7): 26-32. (in Russ.) doi: 10.31146/1682-8658-ecg-191-7-26-32.

2. Horvath A., Leber B., Feldbacher N., Steinwender M., Komarova I., Rainer F., Blesl A., Stadlbauer V. The effects of a multispecies synbiotic on microbiome-related side effects of long-term proton pump inhibitor use: A pilot study. Sci Rep. 2020 Feb 17;10(1):2723. doi: 10.1038/s41598-020-59550-x. PMID: 32066847.

3. Gromova O. A., Rebrov V. G. Vitamins, macro- and microelements. Educational programs of the RIC of the UNESCO Institute of Micronutrients. Moscow. GeotarMedia, 2008, 954 p.

4. Torshin I. Yu., Gromova O. A., Zakcharova I. N., Maximov V. A. Hemomikrobiomny lactitol analysis. Experimental and Clinical Gastroenterology. 2019;(4):111-121. (In Russ.) doi: 10.31146/1682-8658-ecg-164-4-111-121.

5. Torshin I. Yu., Galustyan A. N., Ivanova М. I., et al. Chemomicrobiome Analysis of Synergism of D-mannose and D-fructose in Comparison with Other Metabiotics. Effective Pharmacotherapy.. 2020; 16(4): 8-18. Doi: 10.33978/2307-3586-2020-16-8-18.

6. Gromova O. A., Torshin I. Yu., Naumov A. V., Maksimov V. A. Chemomicrobiomic analysis of glucosamine sulfate, prebiotics and non-steroidal anti-inflammatory drugs. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(3):270-282. (In Russ.) doi: 10.17749/2070-4909/farmakoekonomika.2020.049.

7. Maguire A., Rugg-Gunn A. J. Xylitol and caries prevention - is it a magic bullet? Br Dent J. 2003 Apr 26;-194(8):429-36. doi: 10.1038/sj.bdj.4810022. PMID: 12778091.

8. Shawcross D. L., Jalan R. Treatment of hepatic encephalopathy: it's not lactulose. BMJ. 2004 Jul 10;329(7457):112; author reply 112. doi: 10.1136/bmj.329.7457.112. PMID: 15242927.

9. Barclay T., Ginic-Markovic M., Johnston M. R., Cooper P., Petrovsky N. Observation of the keto tautomer of D-fructose in D(2) O using (1) H NMR spectroscopy. Carbohydr Res. 2012 Jan 10;347(1):136-41. doi: 10.1016/j.carres.2011.11.003. Epub 2011 Nov 12. PMID: 22129837.

10. Torshin I. Y., Rudakov K. V. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognit. Image Anal. 25, 577-587 (2015). doi: 10.1134/S1054661815040252.

11. Torshin I. Y., Rudakov K. V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognit. Image Anal. 27, 16-28 (2017). doi: 10.1134/S1054661817010151.

12. Torshin I. Y., Rudakov K. V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Pattern Recognit. Image Anal. 27, 184-199 (2017). doi: 10.1134/S1054661817020110.

13. Torshin I. Y., Rudakov K. V. On metric spaces arising during formalization of recognition and classification problems. Part 1: Properties of compactness. Pattern Recognit. Image Anal. 26, 274-284 (2016). doi: 10.1134/S1054661816020255.

14. Torshin I. Y., Rudakov K. V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognit. Image Anal. 26, 483-496 (2016). doi: 10.1134/S1054661816030202.

15. Torshin I. Yu., Rudakov K. V. On the procedures of generation of numerical features over the splits of a set of objects and the problem of prediction of numeric target variables. Pattern Recognition and Image Analysis. 2019; 29(2): 65-75. doi: 10.1134/S1054661819040175.

16. Maier L., Pruteanu M., Kuhn M., et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018 Mar 29;555(7698):623-628. doi: 10.1038/nature25979. Epub 2018 Mar 19. PMID: 29555994.

17. A framework for human microbiome research. Nature. 2012 Jun 13;486(7402):215-21. doi: 10.1038/nature11209. PMID: 22699610.

18. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014 Sep 10;16(3):276-89. doi: 10.1016/j.chom.2014.08.014. PMID: 25211071.

19. Kim S., Chen J., Cheng T., et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019 Jan 8;47(D1): D1102-D1109. doi: 10.1093/nar/gky1033. PMID: 30371825.

20. Barkham T. M. Laboratory safety aspects of SARS at Biosafety Level 2. Ann Acad Med Singapore. 2004 Mar;33(2):252-6. PMID: 15098644.

21. Torshin I. Yu. Sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In “Bioinformatics in the Post-Genomic Era” series, ISBN 1-60692-217-0.

22. Cegielska A., Dabrowska M., Lammek B., Mackiewicz Z., Taylor A., Kupryszewski G. Antibacterial peptide derivatives. Part VI. Derivatives of the L-lysine and L-ornithine dipeptides and their effect on the morphology of bacterial cells. Mater Med Pol. 1979 Oct-Dec;11(4):324-9. PMID: 122002.

23. Penninckx M., Gigot D. Synthesis of a peptide form of N-delta-(phosphonoacetyl)-L-ornithine. Its antibacterial effect through the specific inhibition of Escherichia coli L-ornithine carbamoyltransferase. J Biol Chem. 1979 Jul 25;254(14):6392-6. PMID: 376531.

24. Pan M., Lu C., Zheng M., Zhou W., Song F., Chen W., Yao F., Liu D., Cai J. Unnatural Amino-Acid-Based StarShaped Poly(l-Ornithine)s as Emerging Long-Term and Biofilm-Disrupting Antimicrobial Peptides to Treat Pseudomonas aeruginosa- Infected Burn Wounds. Adv Healthc Mater. 2020 Oct;9(19): e2000647. doi: 10.1002/adhm.202000647. Epub 2020 Sep 6. PMID: 32893500.

25. Lohan S., Monga J., Cameotra S. S., Bisht G. S. In vitro and in vivo antibacterial evaluation and mechanistic study of ornithine based small cationic lipopeptides against antibiotic resistant clinical isolates. Eur J Med Chem. 2014 Dec 17;88:19-27. doi: 10.1016/j.ejmech.2014.06.039. PMID: 24961161.


Review

For citations:


Torshin I.Yu., Gromova O.A., Maksimov V.A. Chemomicrobiome analysis of the ornithine molecule. Experimental and Clinical Gastroenterology. 2021;(10):126-131. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-194-10-126-131

Views: 342


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)