Preview

Experimental and Clinical Gastroenterology

Advanced search

Gender assessment of the gut microbiome in obese patients

https://doi.org/10.31146/1682-8658-ecg-194-10-91-99

Abstract

The aim. To assess the relationship between body mass index (BMI) and gut bacteria in men and women with obesity.

Materials and methods. The study included 56 overweight patients, divided into 2 groups. The first group consisted of 27 women (the average age was 62 ± 2.2 years), the second group — 29 men (the average age was 55 ± 9 years). The Quetelet index (kg / m2) was calculated for all patients. To study the gut microbiome, the method of polymerase chain reaction in real time (RT-PCR) and metagenomic sequencing were used. DNA from feces was isolated using the Express-DNA-Bio DNA isolation kit (AlkorBio, Russia). To carry out RT-PCR, a set of reagents “Colonoflor-16” (“Alfalab”, Russia) was used. For microbiome sequencing, DNA libraries were prepared using the Illumina Nextera Sample Preparation Kit with DNA primers corresponding to the V3 — V4 regions of the 16S rRNA gene. The study of fecal samples was carried out using 16S rRNA gene sequencing on the Illumina platform (MiSeq sequencer).

Results. It was revealed that a higher total number of bacteria, an increased content of Bacteroides fragilis group and Faeca-libacterium prausnitzii, is statistically significantly more common in women than in men. Strong negative correlations were found between BMI and total bacterial mass, between BMI and the number of Bacteroides fragilis group among women with grade I obesity. In overweight men, a correlation was found between BMI and the Bacteroides fragilis group / Faecalibacterium prausnitzii ratio.

Conclusions. The total number of bacteria, the content of Bacteroides fragilis group and Faecalibacterium prausnitzii in the gut of patients have statistically significant associations with BMI, and probably can affect the formation of metabolic disorders to a greater extent in women than in men. To clarify the identified trends and patterns in this pilot study, further study of the microbiome with a large number of patients and additional analyzes of the metagenome (16S rRNA) and metabolome, a transcriptome, allowing to control the expression of key metabolic enzymes, largely associated with the compositional features of the gut microbiocenosis, is required.

About the Authors

A. D. Kotrova
Saint-Petersburg State University
Russian Federation

Anna D. Kotrova - MD, PhD Student, Department of Internal Diseases.

Saint-Petersburg, Universitetskaya Emb.,7/9.



A. N. Shishkin
Saint-Petersburg State University
Russian Federation

Alexandr N. Shishkin - MD, PhD, DSc, Professor, Head, Department of Internal Diseases.

Saint-Petersburg, Universitetskaya Emb.,7/9.



L. S. Voropaeva
Institute of Experimental Medicine
Russian Federation

Lyubov S. Voropaeva - MD, PhD student, laboratory assistant, Department of molecular microbiology.

St. Petersburg, Academica Pavlov street, 12.



N. S. Lavrenova
Institute of Experimental Medicine
Russian Federation

Nadezhda S. Lavrenova - Junior Researcher.

St. Petersburg, Academica Pavlov street, 12.



L. A. Slepyh
Saint-Petersburg State University
Russian Federation

Lyudmila A. Slepykh - MD, PhD, Assistant Professor, Department of Internal Diseases.

Saint-Petersburg, Universitetskaya Emb.,7/9.



M. V. Lukashenko
Saint-Petersburg State University
Russian Federation

Mariia V. Lukashenko – Student.

Saint-Petersburg, Universitetskaya Emb.,7/9.



E. I. Ermolenko
Institute of Experimental Medicine
Russian Federation

Elena I. Ermolenko - MD, PhD, DSc, Professor, Head of the Laboratory of biomedical microecology.

St. Petersburg, Academica Pavlov street, 12.



References

1. Nishiwaki H., Ito M., Ishida T., et al. Meta-Analysis of Gut Dysbiosis in Parkinson's Disease. Mov Disord. 2020 Sep; 35(9):1626-1635. doi: 10.1002/mds.28119.

2. Milosevic I., Vujovic A., Barac A., et al. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int J Mol Sci. 2019 Jan 17; 20(2):395. doi: 10.3390/ijms20020395.

3. Prosberg M., Bendtsen F., Vind I., et al. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scand J Gastroenterol. 2016 Dec; 51(12):1407-1415. doi: 10.1080/00365521.2016.1216587.

4. Kotrova A. D., Shishkin A. N., Ermolenko E. I., Saraykina D. A., Volovnikova V. A. Gut microbiota and hypertension. «Arterial'naya Gipertenziya» («Arterial Hypertension»). 2020;26(6):620-628. (In Russ.) doi: 10.18705/1607-419X-2020-26-6-620-628.

5. Ge X., Zheng L., Zhuang R., et al. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose-Response Meta-analysis. Adv Nutr. 2020 Jan 1;11(1):66-76. doi: 10.1093/advances/nmz064.

6. Ozaki D., Kubota R., Maeno T., et al. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int. 2021 Jan;32(1):145-156. doi: 10.1007/s00198-020-05728-y.

7. Kotrova A. D., Shishkin A. N., Semienova O. I., Slepykh L. A. The role of gut microbiota in the development of metabolic syndrome. Experimental and Clinical Gastroenterology. 2019; 172(12): 101-108. (In Russ.) doi: 10.31146/1682-8658-ecg-172-12-101-108.

8. Razavi A.C., Potts K. S., Kelly T. N., Bazzano L. A. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Diff er. 2019 Jun 10;10(1):29. doi: 10.1186/s13293-019-0240-z.

9. Min Y., Ma X., Sankaran K., Ru Y., et al. Sex-specific association between gut microbiome and fat distribution. Nat Commun. 2019 Jun 3;10(1):2408. doi: 10.1038/s41467-019-10440-5.

10. Hao, Xia, Pan, Jiao, Gao, Xiumei, Zhang, Shiyu and Li, Yue. “Gut microbiota on gender bias in autism spectrum disorder” Reviews in the Neurosciences. 2021; 32(1): 69-77. doi: 10.1515/revneuro-2020-0042.

11. Chulkov V. S., Lenets E. A., Chulkov V. S., Gavrilova E. S., Minina E. E., Zhdanova O. V. Gender characteristics of the pathogenesis, prevention and treatment of metabolic syndrome. “Arterial'naya Gipertenziya” (“Arterial Hypertension”). 2020;26(4):371-382. (In Russ.) doi: 10.18705/1607-419X-2020-26-4-371-382.

12. Most J., Goossens G. H., Reijnders D., et al. Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women. Benef Microbes. 2017 Aug 24;8(4):557-562. doi: 10.3920/BM2016.0189.

13. Haro C., Rangel- Zúñiga O.A., Alcalá- Díaz J.F., et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS One. 2016 May 26; 11(5): e0154090. doi: 10.1371/journal.pone.0154090.

14. Koliada A., Moseiko V., Romanenko M., et al. Sex differences in the phylum-level human gut microbiota composition. BMC Microbiol. 2021 Apr 30; 21(1):131. doi: 10.1186/s12866-021-02198-y.

15. Santos-Marcos J.A., Haro C., Vega-Rojas A., et al. Sex Differences in the Gut Microbiota as Potential Determinants of Gender Predisposition to Disease. Mol Nutr Food Res. 2019 Apr; 63(7): e1800870. doi: 10.1002/mnfr.201800870.

16. Ginsar E.A., Selyatitskaya V. G. Comparative characteristic of metabolic syndrome in man and women in the north. Journal of New Medical Technologies. 2009. XVI (3), 77-78. (in Russ.)

17. Mityukova T. A., Kohan S. B., Luzina E. B., Polulyach O. E. Development of metabolic syndrome at persons of reproductive age. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2018;15(1):76-83. (In Russ.) doi: 10.29235/1814-6023-2018-15-1-76-83.

18. DeSantis T.Z., Hugenholtz Р., Larsen N., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006; 72(7): 5069-72. doi: 10.1128/AEM.03006-05.

19. Bor B., Bedree J. K., Shi W., et al. Saccharibacteria (TM7) in the Human Oral Microbiome. J Dent Res. 2019 May; 98(5):500-509. doi: 10.1177/0022034519831671.

20. Kahleova H., Rembert E., Alwarith J., et al. Effects of a Low-Fat Vegan Diet on Gut Microbiota in Overweight Individuals and Relationships with Body Weight, Body Composition, and Insulin Sensitivity. A Randomized Clinical Trial. Nutrients. 2020 Sep 24; 12(10):2917. doi: 10.3390/nu12102917.

21. Guevara-Cruz M., Flores-Lopez A.G., Aguilar-Lopez M., et al. Improvement of Lipoprotein Profile and Metabolic Endotoxemia by a Lifestyle Intervention That Modifies the Gut Microbiota in Subjects With Metabolic Syndrome. J Am Heart Assoc. 2019 Sep 3; 8(17): e012401. doi: 10.1161/JAHA.119.012401.

22. Gosiewski T., Salamon D., Szopa M., et al. Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes - a pilot study. Gut Pathog. 2014 Oct 15; 6(1):43. doi: 10.1186/s13099-014-0043-z.

23. Sun L., Xie C., Wang G., et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018 Dec; 24(12):1919-1929. doi: 10.1038/s41591-018-0222-4.

24. Ignacio A., Fernandes M. R., Rodrigues V. A., et al. Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect. 2016 Mar; 22(3):258. e1-8. doi: 10.1016/j.cmi.2015.10.031.

25. Ejtahed H.S., Hoseini-Tavassol Z., Khatami S., et al. Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. J Diabetes Metab Disord. 2020 Feb 8; 19(1):265-271. doi: 10.1007/s40200-020-00502-7.

26. Gao X., Jia R., Xie L., et al. Obesity in school-aged children and its correlation with gut E.coli and Bifidobacteria: a case-control study. BMC Pediatr. 2015 May 30; 15(64). doi: 10.1186/s12887-015-0384-x.

27. Sun Q., Zhang S., Liu X., et al. Effects of a probiotic intervention on Escherichia coli and high-fat diet-induced intestinal microbiota imbalance. Appl Microbiol Biotechnol. 2020 Feb; 104(3):1243-1257. doi: 10.1007/s00253-019-10304-4.

28. Million M., Angelakis E., Maraninchi M., et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (Lond). 2013 Nov; 37(11):1460-6. doi: 10.1038/ijo.2013.20.

29. Most J., Penders J., Lucchesi M., et al. Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. Eur J Clin Nutr. 2017 Sep;71(9):1040-1045. doi: 10.1038/ejcn.2017.89.

30. Bogdanski P., Suliburska J., Szulinska M., et al. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012 Jun; 32(6):421-7. doi: 10.1016/j.nutres.2012.05.007.

31. Ley R.E., Backhed F., Turnbaugh P., et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005 Aug 2; 102(31):11070-5. doi: 10.1073/pnas.0504978102.


Review

For citations:


Kotrova A.D., Shishkin A.N., Voropaeva L.S., Lavrenova N.S., Slepyh L.A., Lukashenko M.V., Ermolenko E.I. Gender assessment of the gut microbiome in obese patients. Experimental and Clinical Gastroenterology. 2021;(10):91-99. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-194-10-91-99

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)