Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Горизонты развития иммунотерапии злокачественных новообразований печени

https://doi.org/10.31146/1682-8658-ecg-191-7-81-89

Полный текст:

Аннотация

Первичные опухоли печени являются одним из наиболее распространенных типов злокачественных новообразований. Хирургическая резекция по-прежнему остается наиболее эффективным методом лечения на ранних стадиях заболевания, однако в большинстве случаев ранняя диагностика затруднена. Кроме того, даже если лечение проведено по радикальной программе, риск рецидива остается крайне высоким. В связи с этим не прекращается поиск новых стратегий терапии злокачественных новообразований печени, отличных от традиционных методов лечения. Одним из таких перспективных подходов является иммунотерапия. Данный обзор посвящен современным представлениям о механизмах действия и имеющимся клиническом опыте применения иммунотерапевтических подходов в лечении злокачественных новообразований печени. Комбинирование различных видов иммунотерапии или сочетание иммунотерапии с традиционными терапевтическими подходами может обеспечить синергетический эффект и способствовать развитию персонализированной медицины.

Об авторах

В. Е. Мухин
ФГБУ «ЦСП» ФМБА России
Россия


Ю. С. Константинова
ФГБУ «ЦСП» ФМБА России
Россия


Р. Р. Гимадиев
ФГАОУ ВО «Российский университет дружбы народов»
Россия


Н. В. Мазурчик
ФГАОУ ВО «Российский университет дружбы народов»
Россия


Список литературы

1. Chekmazov IA, Ivanikov IO, Sapronov GV, Kirillova NCh, Vinogradova NN. Liver cancer: etiology, pathogenesis, results of long-term clinical and epidemiological observation (in Russian only). Russian journal of Evidence-based gastroenterology = Dokazatel’naya gastroenterologiya. 2019;8(1):5-15. (In Russ.) Doi: 10.17116/dokgastro201980115@@ Чекмазов И. А., Иваников И. О., Сапронов Г. В., Кириллова Н. Ч., Виноградова Н. Н. Рак печени: этиология, патогенез, итоги длительного клинико-эпидемиологического наблюдения. Доказательная гастроэнтерология. 2019;8(1):5-15.

2. Shchegolev AI, Tumanova UN, Mishnev OD. Risk factors of hepatocellular carcinoma. International journal of applied and fundamental research. 2018; 9:164-169. (In Russ.)@@ Щеголев А. И., Туманова У. Н., Мишнёв О. Д. Факторы риска развития гепатоцеллюлярной карциномы. Международный журнал прикладных и фундаментальных исследований. 2018;9:164-169.

3. Ozakyol A. Global Epidemiology of Hepatocellular Carcinoma (HCC Epidemiology). J Gastrointest Canc. 2017; 48:238-240. Doi: 10.1007/s12029-017-9959-0.

4. Merabishvili V.M., Chepik O.f., Merabishvili E. N. Dynamics of observed and relative survival of patients with primary liver cancer on the population level according to disease stage and histological structure. Siberian journal of oncology. 2015;1(4):5-11. (In Russ.)@@ Мерабишвили В. М., Чепик О. Ф., & Мерабишвили Э. Н. Динамика наблюдаемой и относительной выживаемости больных первичным раком печени на популяционном уровне с учетом стадии заболевания и гистологической структуры. Сибирский онкологический журнал. 2015; (4), 5-11.

5. Moini M., Schilsky M. L., Tichy E. M. Review on immunosuppression in liver transplantation. World journal of hepatology. 2015; 7(10):1355. Doi: 10.4254/wjh.v7.i10.1355

6. Robinson M. W., Harmo, C., O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cellular & molecular immunology. 2016; 13(3):267-276. Doi: 10.1038/cmi.2016.3.

7. Guha P., Reha J., Katz. S. C. Immunosuppression in liver tumors: opening the portal to effective immunotherapy. Cancer gene therapy. 2017; 24(3):114-120. Doi: 10.1038/ cgt.2016.54

8. Whiteside T. L. Induced regulatory T cells in inhibitory microenvironments created by cancer. Expert Opin Biol Ther. 2014;14(10):1411-25. Doi: 10.1517/14712598.2014

9. Whiteside TL. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opin Ther Targets. 2018; 22(4):353-363. Doi: 10.1080/14728222.2018.1451514

10. Jinushi M., Takehara T., Tatsumi T., Yamaguchi S., Sakamori R., Hiramatsu N. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology. 2007; 120: 73-82. Doi: 10.1111/j.1365-2567.2006.02479.x

11. Tyznik A.J., Verma S., Wang Q., Kronenberg M,. Benedict C. A. Distinct requirements for activation of NKT and NK cells during viral infection. J Immunol. 2014; 192:3676-3685. Doi: 10.4049/jimmunol.1300837

12. Liu P., Chen L., Zhang H. Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. J Immunol Res. 2018; 2018:1206737. Doi: 10.1155/2018/1206737

13. Horst A.K., Neumann K., Diehl L., Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol. 2016; 13: 277-292. Doi: 10.1038/cmi.2015.112.

14. Knolle P.A., Germann T., Treichel U., Uhrig A., Schmitt E., Hegenbarth S. et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol. 1999; 162: 1401-1407.

15. Carambia A, Frenzel C, Bruns OT, Schwinge D, Reimer R, Hohenberg H et al. Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J Hepatol. 2013; 58: 112-118. Doi: 10.1016/j.jhep.2012.09.008

16. Heymann F., Peusquens J., Ludwig-Portugall I., Kohlhepp M., Ergen C., Niemietz P. et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology. 2015; 62: 279-291. Doi: 10.1002/hep.27793

17. Xie Z, Chen Y, Zhao S, Yang Z, Yao X, Guo S et al. Intrahepatic PD-1/PD-L1 upregulation closely correlates with inflammation and virus replication in patients with chronic HBV infection. Immunol Invest. 2009; 38: 624-638. Doi: 10.1080/08820130903062210.

18. Onishi Y., Fehervari Z., Yamaguchi T., Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 2008; 105: 10113-10118. Doi: 10.1073/pnas.0711106105.

19. Motta JM, Rumjanek VM. Sensitivity of Dendritic Cells to Microenvironment Signals. J Immunol Res. 2016; 2016:4753607. Doi: 10.1155/2016/4753607

20. Heusinkveld M., van der Burg S. H. Identification and manipulation of tumor associated macrophages in human cancers. J. Transl. Med. 2011; 16 (9): 216. Doi: 10.1186/1479-5876-9-216

21. Porta C., Riboldi E., Ippolito A., Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin. Immunol. 2015; 27 (4): 237-48. Doi: 10.1016/j.smim.2015.10.003.

22. Chamarthy M.R., Williams S. C., Moadel R. M. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets’ Yale J. Biol. Med., 2011; 84 (4):391.

23. Lovet J.M., Zucman-Rossi J., Pikarsky E., Sangro B., Schwartz M., Sherman M., et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018. Doi: 10.1038/nrdp

24. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432-1433. Doi: 10.1126/science.342.6165.1432.

25. Spiers L., Coupe N., Payne M. Toxicities associated with checkpoint inhibitors-an overview. Rheumatology (Oxford). 2019;58(Suppl 7): vii7-vii16. Doi: 10.1093/rheumatology/kez418.

26. Scott A.M., Allison J. P., Wolchok J. D. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

27. Nishida T., Kataoka H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers (Basel). 2019;11(9):1339. https://doi.org/

28. Ishiguro T., Sugimoto M., Kinoshita Y., Miyazaki Y., Nakano K., et al. Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res. 2008; 68(23):9832-8. Doi: 10.3390/cancers11091339

29. Abou-Alfa G.K., Puig O., Daniele B., Kudo M., Merle P. et al. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J Hepatol. 2016; 65(2):289-95. Doi: 10.1016/j.jhep.2016.04.004

30. Ishiguro T., Sano Y., Komatsu S. I., Kamata-Sakurai M., Kaneko A., Kinoshita Y. An anti-glypican 3/CD3 bispecific T cell-redirecting antibody for treatment of solid tumors. Science translational medicine. 2017. 9 p. Doi: 10.1126/scitranslmed.aal4291

31. Assal A., Kaner J., Pendurti G., Zang X. Emerging targets in cancer immunotherapy: beyond CTLA-4 and PD-1. Immunotherapy. 2015;7(11):1169-86. Doi: 10.2217/imt.15.78

32. Sangro B., Gomez-Martin C., de la Mata M., Iñarrairaegui M., Garralda E., Barrera P., et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81-88. Doi: 10.1016/j.jhep.2013.02.022.

33. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66:545-551.Doi: 10.1016/j.jhep.2016.10.029.

34. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T. S., Kudo M., Hsu C., et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492-2502. Doi: 10.1016/S0140-6736(17)31046-2.

35. Finn R.S., Ryoo B. Y., Merle P., Kudo M., Bouattour M., Lim H. Y., et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38:193-202. Doi: 10.1200/JCO.19.01307.

36. Yau T., Park J. W., Finn R. S., Cheng A-L., Mathurin P., Edeline J. et al. LBA38_PRCheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30(suppl_5): v851-934. Doi: 10.1093/annonc/mdz394.029

37. Zhu W., Peng Y., Wang L., Hong Y., Jiang X., et al. Identification of alpha-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy. Hepatology. 2018; 68(2):574-89. Doi: 10.1002/hep.29844.

38. Palmer D.H., Midgley R. S., Mirza N., Torr E. E., Ahmed F., Steele J. C. et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49(1):124-32. Doi: 10.1002/hep.22626.

39. Sawada Y., Yoshikawa T., Ofuji K., Yoshimura M., Tsuchiya N., Takahashi M. et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology. 2016; 5(5): e1129483. Doi: 10.1080/2162402X.2015.1129483.

40. Shen J., Wang L. F., Zou Z. Y., Kong W. W., Yan J., Meng F. Y. et al. Phase I clinical study of personalized peptide vaccination combined with radiotherapy for advanced hepatocellular carcinoma. World J Gastroenterol. 2017;23(29):5395-5404. Doi: 10.3748/wjg.v23.i29.5395

41. Zhou H., Luo Y., Zhu S., Wang X., Zhao Y., Ou X., Zhang T., Ma X. The efficacy and safety of anti-CD19/CD20 chimeric antigen receptor- T cells immunotherapy in relapsed or refractory B-cell malignancies: a meta-analysis. BMC Cancer. 2018;18(1):929. Doi: 10.1186/s12885-018-4817-4.

42. Zhang T., Lu Y., Zeng Z., Yuan J., Chen Y., Xiang J., Liu Z. Phase I dose escalating trail of GPC3-targeted CAR-T cells by intratumor injection for Advanced Hepatocellular carcinoma. Cytotherapy. 2019; 21(5): S10. Doi: 10.1016/j.jcyt.2019.03.566

43. Bonifant C.L., Jackson H. J., Brentjens R. J., Curran K. J. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016;3:16011. Doi: 10.1038/mto.2016.11.

44. Moon E.K., Carpenito C., Sun J., Wang L-C.S., Kapoor V., et al. Expression of a functional CCR2 receptor enhances tumor localization and eradication by human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res. 2011;17(14):4719-4730. Doi: 10.1158/1078-0432.CCR-11-0351

45. Katz S.C., Burga R. A., McCormack E., Wang L. J., Mooring J. W., et al. Phase I Hepatic Immunotherapy for Metastases study of intra-arterial chimeric antigen receptor modified T cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21(14):3149-3159. Doi: 10.1158/1078-0432.CCR-14-1421

46. Lin M., Liang S., Wang X., Liang Y., Zhang M., Chen J., Niu L., Xu K. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer. Oncotarget. 2017;8(47):81967-77. Doi: 10.18632/oncotarget.17804.

47. Romanski A., Uherek C., Bug G., Seifried E., Klingemann H., Wels W. S., Ottmann O. G., Tonn T. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 2016;20(7):1287-94. Doi: 10.1111/jcmm.12810.

48. Wang W., Jiang J., Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Letters. 2020; 472:175-180. Doi: 10.1016/j.canlet.2019.11.033


Рецензия

Для цитирования:


Мухин В.Е., Константинова Ю.С., Гимадиев Р.Р., Мазурчик Н.В. Горизонты развития иммунотерапии злокачественных новообразований печени. Экспериментальная и клиническая гастроэнтерология. 2021;(7):81-89. https://doi.org/10.31146/1682-8658-ecg-191-7-81-89

For citation:


Mukhin V.E., Konstantinova Yu.S., Gimadiev R.R., Mazurchik N.V. Horizons of development of immunotherapy for malignant liver tumors. Experimental and Clinical Gastroenterology. 2021;(7):81-89. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-191-7-81-89

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)