Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Синдром избыточного бактериального роста с гипераммониемией как причина конгнитивных расстройств

https://doi.org/10.31146/1682-8658-ecg-186-2-79-87

Полный текст:

Аннотация

Рост когнитивных нарушений (КН) в клинической практике заставляет проводить поиск их новых патогенетических механизмов, среди которых на сегодняшний день активно изучается влияние на головной мозг кишечной микробиоты. Механизмы взаимодействия оси «мозг - микробиота» окончательно не изучены. Целью данного исследования явилось подтверждение возможного влияния на мозг нейротоксина аммиака, повышающегося в крови вследствие синдрома избыточного бактериального роста (СИБР). Материалы и методы: В статье приводятся данные клинического наблюдения, включающего обследование 70 пациентов гастроцентра г. Перми с синдромом диспепсии, у которых проводилось изучение изменения кишечной микробиоты, уровня аммиака капиллярной крови и нарушений когнитивной сферы, проведен их корреляционный анализ. Результаты: По результатам статистического анализа полученных данных мы не обнаружили достоверных изменений или значимых корреляций между изучаемыми параметрами. Однако, выявленная тенденция в связи «СИБР - гипераммониемия - когнитивные нарушения» позволяет предположить, что наличие СИБР может усугублять тяжесть не только имеющихся гастроэнтерологических проявлений, но и являться фактором риска гипераммониемии, а также вносить свой вклад в формирование нарушений когнитивных функций человека.

Об авторах

Л. Г. Вологжанина
ФГБОУ ВО «Пермский государственный медицинский университет им. академика Е. А. Вагнера» Министерства здравоохранения Российской Федерации
Россия


Е. Н. Бородина
ФГБОУ ВО «Пермский государственный медицинский университет им. академика Е. А. Вагнера» Министерства здравоохранения Российской Федерации
Россия


О. А. Игумнова
ФГБОУ ВО «Пермский государственный медицинский университет им. академика Е. А. Вагнера» Министерства здравоохранения Российской Федерации
Россия


А. А. Трапезникова
ФГБОУ ВО «Пермский государственный медицинский университет им. академика Е. А. Вагнера» Министерства здравоохранения Российской Федерации
Россия


Список литературы

1. Ekusheva E. V. Cognitive impairment is a pressing interdisciplinary problem. Rus. med. Jour. 2018. Vol.12, no.1, pp. 32-37.@@ Екушева Е. В. Когнитивные нарушения - актуальная междисциплинарная проблема. Русс. мед. журн. - 2018. - Т. 12, № 1. - С. 32-37.

2. Markin S. P. Prevention and treatment of dementia. Rus. med. Jour. 2010, vol. 8, no.8, pp. 475-482.@@ Маркин С. П. Профилактика и лечение деменции. Русс. мед. журн. - 2010. - Т. 8, № 8. - С. 475-482.

3. Zacharov V. V. Mild cognitive impairment. Diagnosis and treatment Rus. med. Jour. 2006, No. 9, pp. 685-689.@@ Захаров В. В. Умеренные когнитивные расстройства. Диагностика и лечение. Русс. мед. журн. - 2006. - № 9. - С. 685-689.

4. Sujata R, Susan D. Dementia and Cognitive Decline. Evidence Review, 2014, 38 р.

5. Global, regional, and national burden of Alzheimer`s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 2019, Vol. 18, no.1, pp. 88-106. Doi: doi: 10.1016/S1474-4422(18)30403-4

6. Prince M., Bryce R., Albanese E. et al. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement. 2013, 2011, Vol. 9, no.1, pp.63-75.

7. Colin Pritchard, Emily Rosenorn-Lanng. Neurological deaths of American adults (55-74) and the over 75's by sex compared with 20 Western countries 1989-2010: Cause for concern. Surgical Neurology International, 2015, Vol. 6, no.1, pp. 123. DOI: 10.4103/2152-7806.161420

8. Early-Onset Dementia and Alzheimer’s Rates Grow for Younger Americans. Avalable at: https://www.bcbs.com/the-health-of-america/reports/early-onset-dementia-alzheimers-disease-affecting-younger-american-adults.

9. Golomb J., Kluger A., P. Garrard, Ferris S. Clinician’s manual on mild cognitive impairment. London: Science Press Ltd. 2001. 56 P.

10. Petersеn P., Doody R., Kurz A. et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001. Vol.58, pp.1985-1992.

11. Rodríguez-Sánchez E., Mora-Simón S., Patino-Alonso M.C. et al. Prevalence of cognitive impairment in individuals aged over 65 in an urban area: DERIVA study. BMC Neurology, 2011, Vol. 11, 147 Р.

12. Michael Ganci, Emra Suleyman, Henry Butt, Michelle Ball.The role of the brain-gut-microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain and Behavior, 2019, Vol. 9, no.11, pp. 1-19. doi: 10.1002/brb3.1408

13. Kelly J. R., Clarke G., Cryan J. F., Dinan T. G. Brain-gut-microbiota axis: Challenges for translation in psychiatry. Annals of Epidemiology, 2016, Vol.26, no.5, pp. 366-372. doi: 10.1016/j.annepidem.2016.02.008

14. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO, 2006, Rep 7, pp. 688-693.

15. Campell, A. W. Autoimmunity and the gut. Autoimmune Diseases, 2014, pp. 1-12. doi: 10.1155/2014/152428

16. Linneberg A., Nielsen N. H., Madsen F., Frølund L. et al. Increasing prevalence of specific IgE to aeroallergens in an adult population: Two cross-sectional surveys 8 years apart: The Copenhagen Allergy Study. The Journal of Allergy and Clinical Immunology, 2000, Vol. 106, no.2, pp. 247-252. doi: 10.1067/mai.2000.108312

17. Broussard J. L., Devkota S. The changing microbial landscape of Western society: Diet, dwellings and discordance. Molecular Metabolism, 2016, Vol. 5, no.9, pp. 737-742. doi: 10.1016/j.molmet.2016.07.007

18. Gluckman P. D., Low F. M., Buklijas T., Hanson M. A., Beedle A. S. How evolutionary principles improve the understanding of human health and disease. Evolutionary Applications, 2011, Vol.4, no.2, pp. 249-263. doi: 10.1111/j.1752-4571.2010.00164.x

19. Uyeda J. C., Hansen T. F., Arnold S. J., Pienaar J. The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences USA, 2011, Vol.108, no.38, pp. 15908-15913. doi: 10.1073/pnas.1014503108

20. David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, Vol. 505, no.7484, pp. 559-563. doi: 10.1038/nature12820

21. Grenham S., Clarke G., Cryan J. F., Dinan, T. G. Brain-gut-microbe communication in health and disease. Frontiers in Physiology, 2011, no.2, 94 Р. doi: 10.3389/fphys.2011.00094

22. Rashad Alkasir, Jing Li, Xudong Li, et al. Human gut microbiota: the links with dementia development. Protein & Cell, 2017, vol. 8, Р. 90-102.

23. Carabotti M., Scirocco A., Maselli M. A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 2015, Vol.28 no. 2, pp. 203-209.

24. Smith P. M., Howitt M. R., Panikov N., Michaud M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, Vol.341 no.6145, pp. 569-573. doi: 10.1126/science.1241165

25. Bourassa M. W., Alim I., Bultman S. J., Ratan, R. R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 2016, Vol.625, pp. 56-63. doi: 10.1016/j.neulet.2016.02.009

26. den Besten G., van Eunen K., Groen A. K., Venema K. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013, Vol.54 no.9, pp. 2325-2340. doi: 10.1194/jlr.R036012

27. Sun J., Wang F., Li H., Zhang H. et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. BioMed Research International, 2015, 395895 p. doi: 10.1155/2015/395895

28. Hakansson A., Molin G. Gut microbiota and inflammation. Nutrients, 2011, Vol.3 no.6, pp. 637-682. doi: 10.3390/nu3060637

29. Anderson R. C., Cookson A. L., McNabb W. C., Park Z., et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiology, 2010, Vol.10, 316 P. doi: 10.1186/1471-2180-10-316

30. Bischoff S. C., Barbara G., Buurman W., Ockhuizen T., et al. Intestinal permeability - a new target for disease prevention and therapy. BMC Gastroenterology, 2014, Vol.14 no.1, 189 P. doi: 10.1186/s12876-014-0189-7

31. Berkes J., Viswanathan V. K., Savkovic S. D., Hecht, G. Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut, 2003, Vol.52 no.3, pp. 439-451. doi: 10.1136/gut.52.3.439

32. Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clinical Gastroenterology and Hepatology, 2012, Vol.10 no.10, pp. 1096-1100. doi: 10.1016/j.cgh.2012.08.012

33. Braniste V., Al-Asmakh M., Kowal C., Anuar F. et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 2014, Vol.6 no.263, 158 Р. doi: 10.1126/scitranslmed.3009759

34. Kuhnke D., Jedlitschky G., Grube M., Krohn M. et al. MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s Amyloid-β peptides - implications for the mechanisms of Aβ clearance at the blood-brain barrier. Brain Pathology, 2007, Vol.17 no.4, pp. 347-353. doi: 10.1111/j.1750-3639.2007.00075.x

35. Byrne C. S., Chambers E. S., Morrison D. J., Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. International Journal of Obesity, 2015, Vol.39 no.9, pp. 1331-1338. doi: 10.1038/ijo.2015.84

36. Chambers E. S., Viardot A., Psichas A., Morrison D. J. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut, 2015, Vol. 64 no.11, pp. 1744-1754. doi: 10.1136/gutjnl-2014-307913

37. Kondo T., Kishi M., Fushimi T., Ugajin S., Kaga, T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Bioscience, Biotechnology, and Biochemistry, 2009. Vol.73, no.8, pp. 1837-1843. doi: 10.1271/bbb.90231

38. Morrison D. J., Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, Vol.7 no.3, pp. 189-200. doi: 10.1080/19490976.2015.1134082

39. Clarke G., Stilling R. M., Kennedy P. J., Stanton C. et al. Minireview: Gut microbiota: The neglected endocrine organ. Molecular Endocrinology, 2014, Vol.28 no. 8, pp. 1221-1238. doi: 10.1210/me.2014-1108

40. Evrensel A., Ceylan M. E. The gut-brain axis: The missing link in depression. Clinical Psychopharmacology and Neuroscience, 2015, Vol.13 no.3, pp. 239-244. doi: 10.9758/cpn.2015.13.3.239

41. Jenkins T. A., Nguyen J. C., Polglaze K. E., Bertrand P. P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 2016, Vol.8 no.1, pp. 56. doi: 10.3390/nu8010056

42. Zagajewski J., Drozdowicz D., Brzozowska I., Hubalewska-Mazgaj M. et al. Conversion L-tryptophan to melatonin in the gastrointestinal tract: The new high performance liquid chromatography method enabling simultaneous determination of six metabolites of L-tryptophan by native fluorescence and UV-VIS detection. Journal of Physiology and Pharmacology, 2012, Vol.63 no.6, pp. 613-621.

43. Welcome M. O. Current perspectives and mechanisms of relationship between intestinal microbiota dysfunction and dementia: A review. Dement Geriatr Cogn Disord Extra, 2018, no.8, pp. 360-381.

44. Cattaneo A. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 2017, no.49, pp. 60-68.

45. Gonzalez-Navajas J.M., Bellot P., Frances R., Zapater P. et al. Presence of bacterial-DNA in cirrhosis identifies a subgroup of patients with marked inflammatory response not related to endotoxin. J Hepatol, 2008, no.48, pp. 61-67. doi: 10.1016/j.jhep.2007.08.012

46. Zhao Y., Jaber V., Lukiw W. J. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol, 2017. no.7, 318 Р.

47. Paley E. L., Merkulova-Rainon T., Faynboym A., Shestopalov V. I., Aksenoff I. Geographical distribution and diversity of gut microbial NADH: ubiquinone oxidoreductase sequence associated with Alzheimer’s disease. J Alzheimers Dis, 2018, Vol.61 no.4, pp. 1531-1540.

48. Biagi E., Nylund L., Candela M., Ostan R. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010, no.5, 0010667 Р. doi: 10.1371/journal.pone.0010667

49. Balin B. J., Hudson A. P. Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr Allergy Asthma Rep, 2014, no.14, pp. 013-0417. doi: 10.1007/s11882-013-0417-1

50. Lobzin V. Y., kolmakova K.A., Emelin A. Y. A new look at the pathogenesis of Alzheimer’s disease: current understanding of amyloid clearance. Review of Psychiatry and Medical Psychology. 2018, no.2, pp. 22-28. doi: 10.31363/2313-7053-2018-2-22-28@@ Лобзин В. Ю., Колмакова К. А., Емелин А. Ю. Новый взгляд на патогенез болезни Альцгеймера: современные представления о клиренсе амилоида. Обозрение психиатрии и медицинской психологии, 2018, no.2, С. 22-28. doi: 10.31363/2313-7053-2018-2-22-28

51. Hoban A. E., Stilling R. M., Ryan F. J., Shanahan F. et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry, 2016, no.5, 42 P.

52. Lee Y. K., Menezes J. S., Umesaki Y., Mazmanian S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA, 2011, no.1, pp. 4615-4622. doi: 10.1073/pnas.1000082107

53. Schwartz K., Boles B. R. Microbial amyloids-functions and interactions within the host. Curr Opin Microbiol, 2013, no.16, pp. 93-99. doi: 10.1016/j.mib.2012.12.001

54. Hawkes C. H., Del Tredici K., Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol, 2007, no.33, pp. 599-614. doi: 10.1111/j.1365-2990.2007.00874.x

55. Brenner SR. Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-Methylamino-l-Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson-Dementia-Complex in humans and Equine Motor Neuron Disease in Horses. Med Hypotheses, 2013, no.80, 103 Р. doi: 10.1016/j.mehy.2012.10.010

56. Tran L., Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci, 2013, no.68, pp. 1045-1056. doi: 10.1093/gerona/glt106

57. Parodi A., Paolino S., Greco A., Drago F. et al. Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clin Gastroenter Hepatol, 2008, no.6, Р. 759-764. doi: 10.1016/j.cgh.2008.02.054

58. Nursing-Standard Evidence suggests rosacea may be linked to Parkinson’s and Alzheimer’s disease. Nursing Standard, 2016, Vol.30 no.39, 14 Р.

59. Forsythe P., Bienenstock J., Kunze W. A. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol, 2014, no.817, pp. 115-133. doi: 10.1007/978-1-4939-0897-4_5

60. Galland L. The gut microbiome and the brain. J Med Food, 2014, no.17, pp. 1261-1272. doi: 10.1089/jmf.2014.7000


Для цитирования:


Вологжанина Л.Г., Бородина Е.Н., Игумнова О.А., Трапезникова А.А. Синдром избыточного бактериального роста с гипераммониемией как причина конгнитивных расстройств. Экспериментальная и клиническая гастроэнтерология. 2021;(2):79-87. https://doi.org/10.31146/1682-8658-ecg-186-2-79-87

For citation:


Vologzhanina L.G., Borodina E.N., Igumnova O.A., Trapeznikova A.A. Bacterial overgrowth syndrome with hyperammonemia as a cause of cognitive disorders. Experimental and Clinical Gastroenterology. 2021;(2):79-87. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-186-2-79-87

Просмотров: 94


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)