Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Особенности поражения кишечника при COVID-19

https://doi.org/10.31146/1682-8658-ecg-184-12-16-22

Полный текст:

Аннотация

Настоящий обзор представляет систематизацию литературного материала о характере вовлечении кишечника в патологический процесс при COVID-19; обсуждается роль феномена «ось кишечник-легкие» в реализации инфекционного процесса, приводится алгоритм выбора безопасной лекарственной терапии у пациентов с воспалительными заболеваниями кишечника, анализ факторов риска антибиотик-ассоциированной диареи.

Об авторах

А. С. Сарсенбаева
ФГБОУ ВО ЮУГМУ Минздрава России
Россия

Сарсенбаева Айман Силкановна, кафедра терапии ИДПО, профессор, доктор математических наук

454092, Уральский федеральный округ, Челябинская область, г. Челябинск, ул. Воровского, 64



Л. Б. Лазебник
Московский государственный медико-стоматологический университет им. АИ Евдокимова
Россия

Лазебник Леонид Борисович, кафедра Поликлинической терапии, профессор, доктор математических наук

ул. Делегатская, 20\1, г. Москва, 127473



Список литературы

1. Pan A, Liu L, Wang C, et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020 doi: 10.1001/jama.2020.6130.

2. Ong J, Young BE, Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut. 2020;69:1144–1145. doi: 10.1136/gutjnl-2020–321051.

3. Tian Y, Rong L, Nian W, et al. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Th er. 2020;51:843–851.

4. D’Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin Gastroenterol Hepatol. 2020 Jul;18(8):1663–1672. doi: 10.1016/j.cgh.2020.04.001. Epub 2020 Apr 8. PMID: 32278065; PMCID: PMC7141637.

5. Wang J, Li F, Wei H, Lian ZX, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th 17 cell-dependent inflammation. J Exp Med. 2014 Nov 17;211(12):2397–410. doi: 10.1084/jem.20140625. Epub 2014 Nov 3. Erratum in: J Exp Med. 2014 Dec 15;211(13):2683. Erratum in: J Exp Med. 2014 Nov 17;211(12):2396–7. PMID: 25366965; PMCID: PMC4235643.

6. Bingula R, Filaire M, Radosevic-Robin N, et al. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol. 2017;2017:5035371. doi: 10.1155/2017/5035371. Epub 2017 Sep 17. PMID: 29075294; PMCID: PMC5623803.

7. Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 2015;6:1085.

8. Huff nagle GB. Th e Microbiota and Allergies/Asthma What Is the Evidence Linking Changes in the Microbiota to the Development of Allergic Disease? www.plospathogens.org.

9. Enaud R, Prevel R, Ciarlo E, et al. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol. 2020 Feb 19;10:9. doi: 10.3389/fcimb.2020.00009. PMID: 32140452; PMCID: PMC7042389.

10. Madan JC, Koestler DC, Stanton BA, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio. 2012 Aug 21;3(4): e00251–12. doi: 10.1128/mBio.00251–12. PMID: 22911969; PMCID: PMC3428694.

11. Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114–119.

12. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–166.

13. McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48:39–49.

14. Gao QY, Chen YX, Fang JY. 2019 Novel coronavirus infection and gastrointestinal tract. J Dig Dis. 2020;21:125–126.

15. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020.

16. Xing YH, Ni W, Wu Q, et al. Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J Microbiol Immunol Infect. 2020.

17. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26:502–505.

18. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020:1–5.

19. Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020.

20. Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–481.

21. Verdecchia P, Cavallini C, Spanevello A, et al. Th e pivotal link between ACE2 defi ciency and SARS-CoV-2 infection. Eur J Intern Med. 2020:1–0. www.elsevier.com/locate/ejim. Accessed May 7, 2020.

22. Effenberger M, Grabherr F, Mayr L, et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020. doi: 10.1136/gutjnl-2020–321388.

23. Litao G, Jingjing S, Yu L, Lei Z, Xiaona H, Zhijing Z. Risk Factors for Antibiotic-Associated Diarrhea in Critically Ill Patients. Med Sci Monit. 2018;24:5000–5007.

24. Norsa L, Indriolo A, Sansotta N, et al. Uneventful course in IBD patients during SARS-CoV-2 outbreak in northern Italy. Gastroenterology. 2020.

25. An P, Ji M, Ren H, et al. Protection of 318 inflammatory bowel disease patients from the outbreak and rapid spread of COVID-19 infection in Wuhan, China. SSRN Electron J. 2020.

26. Brenner EJ, Ungaro RC, Gearry RB, et al. Corticosteroids, but not TNF antagonists, are associated with adverse COVID-19 outcomes in patients with inflammatory bowel diseases: results from an international registry. Gastroenterology. 2020. doi: 10.1053/j.gastro.2020.05.032.

27. Ni YN, Chen G, Sun J, et al. Th e effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23:99.

28. Lee N, Allen Chan KC, Hui DS, et al. Effects of early corticosteroid treatment on plasma SARS-associated coronavirus RNA concentrations in adult patients. J Clin Virol. 2004;31:304–309.

29. Arabi YM, Mandourah Y, Al-Hameed F, et al.; Saudi Critical Care Trial Group Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir Crit Care Med. 2018;197:757–767.

30. Yang Z, Liu J, Zhou Y, et al. Th e effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020.

31. Rubin DT, Abreu MT, Rai V, et al. Management of patients with Crohn’s disease and ulcerative colitis during the COVID-19 pandemic: results of an International Meeting. Gastroenterology. 2020.

32. O’Connor A, Qasim A, O’Moráin CA. Th e long-term risk of continuous immunosuppression using thioguanides in inflammatory bowel disease. Th er Adv Chronic Dis. 2010;1:7–16.

33. Bonovas S, Fiorino G, Allocca M, et al. Biologic therapies and risk of infection and malignancy in patients with inflammatory bowel disease: a systematic review and network meta-analysis. Clin Gastroenterol Hepatol. 2016;14:1385–1397.e10.

34. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–18.

35. Tursi A, Angarano G, Monno L, et al. COVID-19 infection in Crohn’s disease under treatment with adalimumab. Gut. 2020;69:1364–1365.

36. Anon. Chinese Clinical Trial Register (ChiCTR) – Th e World Health Organization International Clinical Trials Registered Organization Registered Platform http://www.chictr.org.cn/showprojen.aspx?proj=49889. Accessed May 9, 2020.

37. Sneller MC, Clarridge KE, Seamon C, et al. An open-label phase 1 clinical trial of the anti-α4β7 monoclonal antibody vedolizumab in HIV-infected individuals Sci Transl Med. 2019;11.

38. Sandborn WJ, Ghosh S, Panes J, et al.; Study A3921063 Investigators Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367:616– 624.

39. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor fedratinib. J Microbiol Immunol Infect. 2020;53:368–370.

40. Mao R, Liang J, Shen J, et al.; Chinese Society of IBD, Chinese Elite IBD Union; Chinese IBD Quality Care Evaluation Center Committee Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol Hepatol. 2020;5:425–427.

41. Ianiro G, Maida M, Burisch J, et al. Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: a systematic review and meta-analysis. United European Gastroenterol J. 2018;6: 1232–1244.

42. Ianiro G, Murri R, Sciumè GD, et al. Incidence of bloodstream infections, length of hospital stay, and survival in patients with recurrent clostridioides difficile infection treated with fecal microbiota transplantation or antibiotics: a prospective cohort study. Ann Intern Med. 2019;171:695–702.

43. Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108:478–98; quiz 499.

44. Khanna S, Pardi DS, Aronson SL, et al. Th e epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012;107:89–95.

45. Tian CF, Su BY, Li YJ, Tong YH, Zhao XH, Liang JY, Li SB, Gao BL. Management of antibiotic-associated pseudomembranous colitis in Non-hospitalized and hospitalized patients. Pak J Pharm Sci. 2016;29:1805–1810.

46. Zhang Y, Sun J, Zhang J, Liu Y, Guo L. Enzyme Inhibitor Antibiotics and Antibiotic-Associated Diarrhea in Critically Ill Patients. Med Sci Monit. 2018;24:8781–8788.

47. Bartlett JG. Clinical practice. Antibiotic-associated diarrhea. N Engl J Med. 2002;346:334–339.

48. Blaabjerg S, Artzi DM, Aabenhus R. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients-A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2017;6:21.

49. Högenauer C, Hammer HF, Krejs GJ, Reisinger EC. Mechanisms and management of antibiotic-associated diarrhea. Clin Infect Dis. 1998;27:702–710.

50. D’Souza AL, Rajkumar C, Cooke J, Bulpitt CJ. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ. 2002;324:1361.

51. Issa I, Moucari R. Probiotics for antibiotic-associated diarrhea: do we have a verdict? World J Gastroenterol. 2014;20:17788–17795.

52. Ruiter-Ligeti J, Vincent S, Czuzoj-Shulman N, Abenhaim HA. Risk Factors, Incidence, and Morbidity Associated With Obstetric Clostridium difficile Infection. Obstet Gynecol. 2018;131:387–391.

53. McFarland LV, Ozen M, Dinleyici EC, Goh S. Comparison of pediatric and adult antibiotic-associated diarrhea and Clostridium difficile infections. World J Gastroenterol. 2016;22:3078–3104.

54. McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol. 2008;3:563–578.

55. Hong Zhou, Qiang Xu, Yu Liu, and Li-Tao GuoRisk factors, incidence, and morbidity associated with antibiotic-associated diarrhea in intensive care unit patients receiving antibiotic monotherapy. World J Clin Cases. 2020 May 26; 8(10): 1908–1915.Published online 2020 May 26. doi: 10.12998/wjcc.v8.i10.1908

56. Puri BK, Hakkarainen-Smith JS, Monro JA. Th e potential use of cholestyramine to reduce the risk of developing Clostridium difficile-associated diarrhoea in patients receiving long-term intravenous ceftriaxone. Med Hypotheses. 2015;84:78–80.

57. Videlock EJ, Cremonini F. Meta-analysis: probiotics in antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2012;35:1355–1369.

58. Shen NT, Maw A, Tmanova LL, Pino A, Ancy K, Crawford CV, Simon MS, Evans AT. Timely Use of Probiotics in Hospitalized Adults Prevents Clostridium difficile Infection: A Systematic Review With Meta-Regression Analysis. Gastroenterology. 2017;152:1889–1900.e9.

59. Evans CT, Safdar N. Current Trends in the Epidemiology and Outcomes of Clostridium difficile Infection. Clin Infect Dis. 2015;60 Suppl 2: S66–S71.

60. Huang H, Wu S, Wang M, Zhang Y, Fang H, Palmgren AC, Weintraub A, Nord CE. Molecular and clinical characteristics of Clostridium difficile infection in a University Hospital in Shanghai, China. Clin Infect Dis. 2008;47:1606–1608.

61. Xie C, Li J, Wang K, Li Q, Chen D. Probiotics for the prevention of antibiotic-associated diarrhoea in older patients: a systematic review. Travel Med Infect Dis. 2015;13:128–134.

62. Ma H, Zhang L, Zhang Y, Liu Y, He Y, Guo L. Combined administration of antibiotics increases the incidence of antibiotic-associated diarrhea in critically ill patients. Infect Drug Resist. 2019;12:1047–1054.

63. Howell MD, Novack V, Grgurich P, Soulliard D, Novack L, Pencina M, Talmor D. Iatrogenic gastric acid suppression and the risk of nosocomial Clostridium difficile infection. Arch Intern Med. 2010;170:784–790.

64. McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am. J. Gastroenterol. 2006;101:812–822. doi: 10.1111/j.1572–0241.2006.00465.x.

65. McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 2010;16:2202–2222. doi: 10.3748/wjg.v16.i18.2202.

66. Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging Clin Exp Res. 2020 Jun 11: 1–8. doi: 10.1007/s40520–020–01616-x [Epub ahead of print]. Gemelli Against COVID-19 Post-Acute Care Study Group


Для цитирования:


Сарсенбаева А.С., Лазебник Л.Б. Особенности поражения кишечника при COVID-19. Экспериментальная и клиническая гастроэнтерология. 2020;(12):16-22. https://doi.org/10.31146/1682-8658-ecg-184-12-16-22

For citation:


Sarsenbaeva A.S., Lazebnik L.B. Features of intestinal damage in COVID-19. Experimental and Clinical Gastroenterology. 2020;(12):16-22. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-184-12-16-22

Просмотров: 462


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)