Pleiotropic effects of ursodeoxycholic acid in patients with non-alcoholic steatohepatitis with impaired glycemic control
https://doi.org/10.31146/1682-8658-ecg-183-11-34-38
Abstract
The goal was to determine the effect of ursodeoxycholic acid (UDCA) in non-alcoholic steatohepatitis (NASH) with impaired glycemic control.
Materials and methods. 67 patients NASH were examined: prediabetes — 38 (56.7%), type 2 diabetes mellitus 29 (43.3%), men — 39 (58.2%), women — 28 (41.8%), age — 45.1 ± 10.2 years. The UDCA dose was 9.4 ± 2.0 mg / kg / day during 59.7 ± 77.6 weeks. Fragments of cytokeratin-18 (FCK-18) (TPS ELISA, Biotech, Sweden), TNF-α (Human TNFα Platinum ELISA, eBioscience, Austria), IL-6 (“Interleukin-6-IFA-Best”, Vector-Best, Russia), insulin (“Insulin TEST System”, Monobind Inc., USA), HOMA-IR were determined.
Results. There was a decrease in the levels of FCK-18 — from 238.1 ± 93.7 to 170.7 ± 79.2 U / l (p <0.05), ALT — 61.3 ± 19.0 to 38.9 ± 19.1 U / l (p <0.05), glucose 5.9 ± 1.3 to 5.5 ± 0.7 mmol / l (p <0.05), insulin 21.9 ± 18.2 to 13.7 ± 9.7 MkU / l, HOMA-IR — 5.8 ± 2.2 to 3.1 ± 0.8 (p <0.05), cholesterol — 6.2 ± 0.9 to 5.3 ± 0.3 mmol / l, LDL — 3.9 ± 0.9 to 3.2 ± 0.6 mmol / l (p <0.05), TNF-α 6.3 ± 1.5 to 5.4 ± 2.1 pg / ml (p <0.05), IL-6–7.1 ± 3.4 to 4, 1 ± 3.2 pg / ml (p <0.05).
Conclusion. UDCA had pleiotropic effects in NASH with impaired glycemic control, reducing cellular apoptosis, necrosis, inflammation, improving insulin sensitivity and lipid homeostasis.
About the Authors
A. A. ShipovskayaRussian Federation
Anastasiya A. Shopovskaya, assistant of the Department of Propaedeutics of Internal Diseases and Hygiene; Scopus Author ID: 57202004569
185910, Russia, Republic of Karelia, Petrozavodsk, Lenin avenue, 33
I. V. Kurbatova
Russian Federation
Irina V. Kurbatova, Cand. (PhD) of Biology, Senior Research Associate in the Laboratory for Genetics; Scopus Author ID: 6603406315
185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya st., 11
O. P. Dudanova
Russian Federation
Olga P. Dudanova, Professor, Doctor of Medical Science, Head Department of Propaedeutics of Internal Diseases and Hygiene; Scopus Author ID6603343207
185910, Russia, Republic of Karelia, Petrozavodsk, Lenin avenue, 33
References
1. Shipovskaya A. A., O. P. Dudanova.Intrahepatic cholestasis in nonalcoholic fatty liver disease. Ter Arkh. 2018;90(2):69–74. doi: 10.26442/terarkh201890269–74. (In Russ.)
2. Puri P., Daita K., Joyce A., Mirshahi F., Santhekadur P. K., S. Cazanave et al. The Presence and Severity of Nonalcoholic Steatohepatitis Is Associated With Specific Changes in Circulating Bile Acids. Hepatology. 2018;67 (2): 534–548. doi: 10.1002/hep.29359.
3. Jungst C., Berg T., Cheng J., Green R. M., Jia J., Mason A. L. and Lammert F. Intrahepatic cholestasis in common chronic liver diseases. Eur J Clin Invest. 2013;43 (10):1069–1083.
4. Gottlieb A. and Canbay A. Why Bile Acids Are So Important in Non-Alcoholic Fatty Liver Disease (NAFLD) Progression. Cells. 2019;8 (11):1358. Doi: 10.3390/cell8111358.
5. Zhu Y., Liu H., Zhang M., Guo G. L. Fatty Liver Diseases, Bile Acids, and FXR. Acta Pharm Sin B. 2016; 6 (5):409–412. doi: 10.1016/j.apsb.2016.07.008
6. Flynn Ch. R., Albaugh V. L., Abumrad N. N. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cellular and Molecular Gastroenterology and Hepatology. 2019; 8 (2):235–246.
7. Trauner M, Graziadei IW. Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment Pharmacol Ther. 1999. Vol.13, pp. 979‐996.
8. Xiang Z., Chen Y., Ma K., Ye Y., Zheng L., Yang Y. et al. The role of Ursodeoxycholic acid in non-alcoholic steatohepatitis: a systematic review. BMC Gastroenterology. 2013. Vol. 13, pp. 140. Doi: 10.1186/1471–230X-13–140.
9. Ratziu V, de Ledinghen V, Oberti F, Mathurin P, WartelleBladou C, Renou C. et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepato, 2011;54 (5):1011–9. doi: 10.1016/j.jhep.2010.08.030.
10. Gavrilova N. P., Seliverstov P. V., Ayrapetyan M. S., Sitkin S. I., Radchenko V. G. Ursodeoxycholic acid in combination with menopausal hormone therapy corrects metabolic abnormalities in postmenopausal women with non-alcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2019;(8):77–81. (In Russ.) https://doi.org/10.31146/1682–8658-ecg-168–8–77–81
11. Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P. et al. Ursodeoxycholic Acid for Treatment of Nonalcoholic Steatohepatitis: Results of a Randomized Trial. Hepatology. 2004;39 (3):770–8. DOI: 10.1002/hep.20092
12. Dufour J-F., Oneta C. M., Gonvers J.-J., Bihl F., Cerny A., Cereda J-M. et al. Randomized Placebo-Controlled Trial of Ursodeoxycholic Acid With Vitamin E in Nonalcoholic Steatohepatitis. Hepatol. 2006;4 (12):1537–43. doi: 10.1016/j.cgh.2006.09.025.
13. Li J., Dawson P. A. Animal Models to Study Bile Acid Metabolism, Biochim Biophys Acta Mol Basis Dis. 2019;1865 (5):895–911 doi: 10.1016/j.bbadis.2018.05.011
14. Mueller M., Castro R. E., Thorell A., MarschallH-U., Auer N., Herac M. et al. Ursodeoxycholic Acid: Effects on Hepatic Unfolded Protein Response, Apoptosis and Oxidative Stress in Morbidly Obese Patients. Liver Int. 2018;38 (3):523–531. doi: 10.1111/liv.13562.
15. Amaral JD, Castro RE, Sola S, Steer CJ, Rodrigues CM. p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis. J Biol Chem. 2007. Vol. 282, pp. 34250‐34259.
16. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res. 2009. Vol. 50, pp. 1721‐1734. DOI: 10.1194/jlr.R900011-JLR200
17. Kusaczuk M. Tauroursodeoxycholate – Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives. Cells. 2019;8 (12):1471. doi: 10.3390/cells8121471.
18. Kurbatova I. V., Topchieva L. V., Dudanova O. P. Polymorphism –308G> A of TNF gene (rs1800629) and its influence on the effectiveness of ursodeoxycholic acid therapy in patients with non-alcoholic steatohepatitis. Bulletin of Experimental Biology and Medicine. 2018;165 (1):64–68. DOI 10.1007/s10517–018–4100–3. (In Russ.)
19. CastroR. E., Ferreira D. M. S., Afonso M. B., Borralho P. M., Machado M. V., Cortez-Pinto H., Rodrigues C. M. P. miR-34a/SIRT1/p53 Is Suppressed by Ursodeoxycholic Acid in the Rat Liver and Activated by Disease Severity in Human Non-Alcoholic Fatty Liver Disease. J Hepatol. 2013. Vol. 58 (1), pp. 119–25. doi: 10.1016/j.jhep.2012.08.008.
20. Thomas Ch., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G. et al. TGR5-mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metab. 2009. Vol. 10 (3), pp. 167–77. doi: 10.1016/j.cmet.2009.08.001.
21. Kumar D. P., Asgharpour A., Mirshahi F., Park S. H., Liu S., Imai Y. et al. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis, J Biol Chem. 2016; 291 (13):6626–40. doi: 10.1074/jbc.M115.699504.
22. Ding L., Yang L., Wang Zh., Huang W. Bile Acid Nuclear Receptor FXR and Digestive System Diseases. Acta Pharm Sin B. 2015;5 (2):135–44 doi: 10.1016/j.apsb.2015.01.004.
23. Radchenko V. G., Seliverstov P. V., Sitkin S. I. New aspects of pharmacological effects of ursodeoxycholic acid. Experimental and clinical gastroenterology. 2014; 108 (8): 4–10. (In Russ)
24. Stepanov V., Stankov K., Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. Journal of Receptors and Signal Transduction. 2013;33 (4): 213–223.
Review
For citations:
Shipovskaya A.A., Kurbatova I.V., Dudanova O.P. Pleiotropic effects of ursodeoxycholic acid in patients with non-alcoholic steatohepatitis with impaired glycemic control. Experimental and Clinical Gastroenterology. 2020;183(11):34-38. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-183-11-34-38