The evolution of the concept of the intestinal microbial-tissue complex
https://doi.org/10.31146/1682-8658-ecg-183-11-4-10
Abstract
The human gastrointestinal tract is one of the largest in area — points of contact between the internal environment of the host and environmental factors.
The most important functional element of this interaction is the microbial — tissue complex of the gastrointestinal tract, and its permeability is defined as a key option in the implementation of the mechanisms of adaptation and homeostasis.
The microbiota is represented in various interpretations by the main four domains (archaea, bacteria or eubacteria, eukaryotes and viruses). The combination of these domains into the Biota taxon suggests the need to use the term biota-tissue complex, which more fully reflects the sophisticated interactions of all microbial-tissue complexes of the body.
About the Authors
V. B. GrinevichRussian Federation
Vladimir B. Grinevich, Head of 2nd Therapy department of postgraduate education, DSci, professor; Scopus Author ID: 7005167197
194044, St. Petersburg, Akademika Lebedev street, 6
Yu. A. Kravchuk
Russian Federation
Yuri A. Kravchuk, M.D., D. Sc. (Medicine), Professor of 2nd Therapy department of postgraduate education
194044, St. Petersburg, Akademika Lebedev street, 6
E. I. Sas
Russian Federation
Evgeny I. Sas, M.D., D. Sc. (Medicine), Professor of 2nd Therapy department of postgraduate education
194044, St. Petersburg, Akademika Lebedev street, 6
References
1. Aas, J., Gessert, C.E., Bakken, J. S. Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin. Infect. Dis. 2003; 36: 580–585
2. Abad, C., Martinez, C., Juarranz, M.G., Arranz, A. et al. Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology. 2003; 124: 961–971
3. Ahlman, H., Lundberg, J., Dahlström, A., Kewenter, J. A possible vagal adrenergic release of serotonin from enterochromaffi n cells in the cat. Acta Physiol. Scand. 1976; 98: 366–375
4. Ahmad, A., Wang, C.H., Bell, R.G. A role for IgE in intestinal immunity. Expression of rapid expulsion of Trichinella spiralis in rats transfused with IgE and thoracic duct lymphocytes. J. Immunol. 1991; 146: 3563–3570
5. Amato, A., Cinci, L., Rotondo, A., Serio, R. et al. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol. Motil. 2010; 22 (664–e203)
6. Angrist, M., Bolk, S., Halushka, M. et al. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat. Genet. 1996; 14: 341–344
7. Johansson, M.E.V., Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016; 16: 639–649.
8. Bevins, C.L., Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 2011; 9: 356–368.
9. Ayabe, T., Satchell, D.P., Wilson, C.L., Parks, W.C., Selsted, M.E., Ouel- lette, A. J. Secretion of microbicidal alpha-defensins by intestinal Pan- eth cells in response to bacteria. Nat. Immunol. 2000; 1: 113–118.
10. Sternini, C., Anselmi, L., Rozengurt, E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 2008; 15: 73–78.
11. Ley, R.E., Hamady, M., Lozupone, C. et al. Evolution of mammals and their gut microbes. Science. 2008; 320: 1647–1651.
12. Pacha, J. Development of intestinal transport function in mammals. Physiol. Rev. 2000; 80: 1633–1667.
13. Broer, S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 2008; 88: 249–286.
14. Hansen, G.H., Niels-Christiansen, L.L., Immerdal, L. et al. Transcytosis of immunoglobulin A in the mouse enterocyte occurs through glycolipid raft- and rab17-containing com- partments. Gastroenterology. 1999; 116: 610–622.
15. Espinosa-Medina, I., Saha, O., Boismoreau, F. et al. The sacral autonomic outflow is sympathetic. Science. 2016; 354: 893–897.
16. Derrien, M., Vaughan, E.E., Plugge, C.M., de Vos, W. M. Akkerman- sia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacte- rium. Int. J. Syst. Evol. Microbiol. 2004; 54: 1469–1476.
17. Bevins, C.L., Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 2011; 9: 356–368.
18. Vaishnava, S., Yamamoto, M., Severson, K.M. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011; 334: 255–258.
19. Sternini, C., Anselmi, L., Rozengurt, E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 2008; 15: 73–78.
20. Cooke K. R., Hill G. R., Gerbitz A., Kobzik L., Martin T. R. et al. Hyporesponsiveness of donor cells to lipopolysaccharide stimulation reduces the severity of experimental idiopathic pneumonia syndrome: potential role for a gut-lung axis of inflammation. J Immunol. 2010; 165: 6612–6619.
21. Trompette A., Gollwitzer E. S., Yadava K., Sichelstiel A. K., Sprenger N. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014; 20: 159–166.
22. Chen Z., Venkat P., Seyfried D. et al. Brain-Heart Interaction: Cardiac Complications After Stroke. Circ Res. 2017; 121(4): 451–468.
23. Grinevich, V.B., Sas, E.I., Kon, V.E. et al. Prebiotic correction of the intestinal microbial-tissue complex as a basic component of modern pathogenetic therapy of metabolic syndrome and associated cardiovascular and cerebrovascular diseases. Study guide. SPb., 2012. 20 p. (In Russ.)
24. Grinevich, V. B. Sas, E.I., Kravchuk, Yu.A. et al. New approaches to the treatment of chronic systemic inflammation and insulin resistance syndrome in patients with non-alcoholic fatty liver disease. Russian medical journal. 2011. Vol. 19, No. 5, pp. 293–298.
25. Grinevich, V.B., Kravchuk, Yu.A., Ped V. I., Arapkhanova, M.M., Sheraliev, A. R. Carcinogenesis in patients with non-alcoholic fatty liver disease without cirrhosis: the role of bile acids and intestinal microbiota. Experimental and Clinical Gastroenterology. 2019;8 (168):4–10 (In Russ.)
26. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019; 68(8): 1516–1526.
27. Fasano, A. Intestinal permeability and its regulation by zonulin: di‐ agnostic and therapeutic implications. Clin Gastroenterol Hepatol. 2012; 10: 1096‐1100.
28. Leech, B., Schloss, J., Steel, A. Association between increased intestinal permeability and disease: a systematic review. Adv Integr Med. 2018; 6: 23‐34.
29. Colpani, V., Baena, C.P., Jaspers, L. et al. Lifestyle factors, cardiovascular disease and all‐cause mortality in middle‐aged and elderly women: a systematic review and meta‐analysis. Eur J Epidemiol. 2018; 33: 831‐845.
30. Leech, B., McIntyre, E., Steel, A., Sibbritt, D. Risk factors associated with intestinal permeability in an adult population: A systematic review. Int J Clin Pract. 2019; 73(10): e13385. doi:10.1111/ijcp.13385
31. Feingold, K.R., Grunfeld, C. The role of HDL in innate immunity. J Lipid Res. 2011; 52: 1‐3.
32. Damms‐Machado, A., Louis, S., Schnitzer, A. et al. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr. 2017; 105: 127‐135.
33. Liang, S, Wu, X, Jin, F. Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis. Front Integr Neurosci. 2018; 12: 33. Published 2018 Sep 11. doi:10.3389/fnint.2018.00033
Review
For citations:
Grinevich V.B., Kravchuk Yu.A., Sas E.I. The evolution of the concept of the intestinal microbial-tissue complex. Experimental and Clinical Gastroenterology. 2020;183(11):4-10. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-183-11-4-10