Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Кишечный микробиом и заболевания поджелудочной железы

https://doi.org/10.31146/1682-8658-ecg-180-8-107-113

Полный текст:

Аннотация

Микробиом кишечника все чаще признается за его роль в здоровье и заболевании человека. Первоначальные данные указывают на то, что микробный дисбиоз кишечника связан с несколькими заболеваниями поджелудочной железы. Хотя неизвестно, являются ли эти ассоциации причиной, дисбактериоз кишечника предположен, чтобы опосредовать хронические провоспалительные изменения в поджелудочной железе. Необходимы дальнейшие исследования микробиома. В конечном счете, целенаправленная модуляция микробиоты может иметь терапевтическое значение.

Об авторах

В. А. Ахмедов
ФГБОУ ВО ОмГМУ Минздрава России
Россия

Ахмедов Вадим Адильевич - доктор медицинских наук, профессор, заведующий кафедрой медицинской реабилитации дополнительного профессионального образования.

644099, Омская область, Омск, ул. Ленина, д. 12



Н. Ф. Мамедова
ФГБОУ ВО ОмГМУ Минздрава России
Россия

Мамедова Нармина Фикретовна - ординатор кафедры.

644099, Омская область, Омск, ул. Ленина, д. 12



Список литературы

1. Forbes J. D., Van Domselaar G., Bernstein C. N. Th e Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol, 2016, vol.7, pp. 1081. doi: 10.3389/fmicb.2016.01081.

2. Savage D. C. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 1977, vol. 31, pp. 107–133. 10.1146/annurev.mi.31.100177.000543

3. Lucas Lopez R., Grande Burgos M. J., Galvez A. et al. Th e human gastrointestinal tract and oral microbiota in infl ammatory bowel disease: a state of the science review. APMIS, 2017 vol. 125, no. 1, pp. 3–10. doi: 10.1111/apm.12609.

4. Pagliari D., Piccirillo C. A., Larbi A. et al. Th e Interactions between Innate Immunity and Microbiota in Gastrointestinal Diseases. J Immunol Res, 2015, vol. 2015. Pp. 898297. doi: 10.1155/2015/898297

5. Jandhyala S.M., Talukdar R., Subramanyam C. et al. Role of the normal gut microbiota. World journal of gastroenterology, 2015, vol. 21, no. 29. Pp. 8787–8803. doi: 10.3748/wjg.v21.i29.8787.

6. Tang W. H., Wang Z., Levison B. S. et al. Intestinal mi-crobial metabolism of phosphatidylcholine and cardiovascular risk. Th e New England journal of medi-cine, 2013, vol. 368, no. 17. Pp. 1575–1584. doi: 10.1056/ NEJMoa1109400.

7. Fujisaka S., Avila-Pacheco J., Soto M. et al. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell reports, 2018, vol. 22, no. 11. Pp. 3072–3086. doi: 10.1016/j.celrep.2018.02.060.

8. Zierer J., Jackson M. A., Kastenmuller G. et al. Th e f ecal metabolome as a functional readout of the gut microbi-ome. Nature genetics, 2018, vol. 50, no. 6, pp. 790–795. doi: 10.1038/s41588–018–0135–7.

9. Sartor R. B., Wu G. D. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Infl ammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology, 2017, vol. 152, no. 2, pp. 327–339. doi: 10.1038/s41588–018–0135–7

10. Pushalkar S., Hundeyin M., Daley D. et al. Th e P ancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov, 2018, vol. 8, no. 4. Pp. 403–416. doi: 10.1158/2159–8290.CD-17–1134

11. Signoretti M., Roggiolani R., Stornello C. et al. Gut mi-crobiota and pancreatic diseases. Minerva Gastroenterol Dietol, 2017, vol. 63, no. 4. Pp. 399–410. doi: 10.23736/S1121–421X.17.02387-X

12. David L. A., Maurice C. F., Carmody R. N. et al. Diet rapidly and reproducibly alters the human gut microbi-ome. Nature, 2014, vol. 505, no. 7484. Pp. 559–563. doi: 10.1038/nature12820.

13. Wu G. D., Chen J., Hoff mann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, NY), 2011, vol. 334, no. 6052. Pp. 105–108. doi: 10.1126/science.1208344

14. Llorente C., Jepsen P., Inamine T. et al. Gastric acid sup-pression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nature com-munications, 2017, vol. 8, no. 1, pp. 837. doi: 10.1038/s41467–017–00796-x.

15. Forslund K., Hildebrand F., Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, vol. 528, no. 7581. Pp. 262–266. doi: 10.1038/nature15766.

16. Kolde R., Franzosa E. A., Rhnavard G. et al. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome medicine, 2018, vol. 10, no. 1. Pp. 6. doi: 10.1186/s13073–018–0515–8.

17. Li D., Achkar J. P., Haritunians T. et al. A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn’s Disease and Human Gut Microbiome Composition. Gastroenterology, 2016, vol. 151, no. 4, pp. 724–732. doi: 10.1053/j.gastro.2016.06.051.

18. Imhann F., Vich Vila A., Bonder M. J. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of infl ammatory bowel dis-ease. Gut, 2018, vol. 67, no. 1, pp. 108–119. doi: 10.1136/gutjnl-2016–312135.

19. Yadav D., Lowenfels A. B. Th e epidemiology of pancreati-tis and pancreatic cancer. Gastroenterology, 2013, vol. 144, no. 6, pp. 1252–1261. doi: 10.1053/j.gastro.2013.01.068.

20. Peery A. F., Crockett S. D., Barritt A. S. et al. Burden of Gastrointestinal, Liver, and Pancreatic Diseases in the United States. Gastroenterology, 2015, vol.149, no. 7, pp. 1731–1741. doi: 10.1053/j.gastro.2018.08.063.

21. Lerch M. M., Gorelick F. S. Models of acute and chronic pancreatitis. Gastroenterology, 2013, vol. 144, no. 6. Pp. 1180–1193. doi: 10.1053/j.gastro.2012.12.043.

22. Andersson R., Wang X. D. Gut barrier dysfunction in ex-perimental acute pancreatitis. Ann Acad Med Singapore, 1999, vol.28, no. 1, pp. 141–146.

23. Wu L. M., Sankaran S. J., Plank L. D. et al. Meta-analysis of gut barrier dysfunction in patients with acute pan-creatitis. Br J Surg, 2014, vol. 101, no. 13, pp. 1644–1656. doi: 10.1002/bjs.9665.

24. Li Q., Wang C., Tang C. et al. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques. Crit Care Med, 2013, vol.41, no. 8, pp. 1938–1950. doi: 10.1097/CCM.0b013e31828a3dba.

25. Werge M., Novovic S., Schmidt P. N. et al. Infection in-creases mortality in necrotizing pancreatitis: A system-atic review and meta-analysis. Pancreatology 2016, vol. 16, no. 5, pp. 698–707. doi: 10.1016/j.pan.2016.07.004.

26. Sahar N., Kozarek R. A., Kanji Z. S. et al. Th e m icro-biology of infected pancreatic necrosis in the era of minimally invasive therapy. Eur J Clin Microbiol Infect Dis, 2018, vol. 37, no. 7, pp. 1353–1359. doi: 10.1007/s10096–018–3259-x.

27. Caldas C., Hahn S. A., da Costa L. T. et al. Frequent so-matic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature genetics, 1994, vol.8, no. 1, pp. 27–32. doi: 10.1038/ ng0994–27.

28. Van Felius I. D., Akkermans L. M., Bosscha K. et al. Interdigestive small bowel motility and duodenal bac-terial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil, 2003, vol. 15, no. 3, pp. 267– 276. doi: 10.1046/j.1365–2982.2003.00410.x.

29. Fritz S., Hackert T., Hartwig W. et al. Bacterial transloca-tion and infected pancreatic necrosis in acute necrotizing pancreatitis derives from small bowel rather than from colon. Am J Surg, 2010, vol. 200, no. 1, pp. 111–117. doi: 10.1016/j.amjsurg.2009.08.019.

30. Chen J., Huang C., Wang J. et al. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One, 2017, vol. 12, no. 4, e0176583. doi: 10.1371/journal.pone.0176583.

31. Wong W. Shaping the gut microbiome from the pancreas. Sci Signal, 2017, vol. 10, no. 472, e 3016. doi: 10.1126/scisignal.aan3016.

32. Ahuja M., Schwartz D. M., Tandon M. et al. Orai1-Mediated Antimicrobial Secretion from Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metab, 2017, vol. 25, no. 3, pp. 635–646. doi: 10.1016/j.cmet.2017.02.007.

33. Watanabe T., Sadakane Y., Yagama N. et al. Nucleotide-binding oligomerization domain 1 acts in concert with the cholecystokinin receptor agonist, cerulein, to induce IL-33-dependent chronic pancreatitis. Mucosal immu-nology 2016, vol. 9, no. 5, pp. 1234–1249. doi: 10.1038/mi.2015.144.

34. Tsuji Y., Watanabe T., Kudo M. et al. Sensing of commen-sal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. Immunity, 2012, vol. 37, no. 2, pp. 326–338. doi: 10.1016/j.immuni.2012.05.024.

35. Tan C., Ling Z., Huang Y. et al. Dysbiosis of Intestinal Microbiota Associated With Infl ammation Involved in the Progression of Acute Pancreatitis, Pancreas, 2015, vol. 44, no. 6, pp. 868–875. doi: 10.1097/MPA.0000000000000355.

36. Gou S., Yang Z., Liu T. et al. Use of probiotics in the treat-ment of severe acute pancreatitis: a systematic review and meta-analysis of randomized controlled trials. Crit Care, 2014, vol. 18, no. 2, R. 57. doi: 10.1186/cc13809.

37. Poropat G., Giljaca V., Hauser G. et al. Enteral nutrition formulations for acute pancreatitis. Cochrane Database Syst Rev. 2015, 3, CD010605. doi: 10.1002/14651858.CD010605.pub2.

38. Besselink M. G., Timmerman H. M., Buskens E. et al. Probiotic prophylaxis in patients with predicted severe acute pancreatitis (PROPATRIA): design and rationale of a double-blind, placebo-controlled randomised mul-ticenter trial [ISRCTN38327949]. BMC Surg, 2004, vol. 4, pp. 12. doi: 10.1186/1471–2482–4–12.

39. Memba R., Duggan S. N., Ni Chonchubhair H. M. et al. Th e potential role of gut microbiota in pancreatic disease: A systematic review. Pancreatology, 2017, vol. 17, no. 6, pp. 867–874. doi: 10.1016/j.pan.2017.09.002.

40. Bures J., Cyrany J., Kohoutova D. et al. Small intestinal bacterial overgrowth syndrome. World journal of gas-troenterology, 2010, vol. 16, no. 24, pp. 2978–2990. doi: 10.3748/wjg.v16.i24.2978.

41. Dutta S. K., Russell R. M., Iber F. L. Impaired acid neutral-ization in the duodenum in pancreatic insuffi ciency. Dig Dis Sci, 1979, vol. 24, no. 10, pp. 775–780. doi: 10.1007/BF01317211.

42. Ni Chonchubhair H. M., Bashir Y., Dobson M. et al. Th e prevalence of small intestinal bacterial overgrowth in non-surgical patients with chronic pancreatitis and pan-creatic exocrine insuffi ciency (PEI). Pancreatology, 2018, vol. 18, no. 4, pp. 379–385. doi: 10.1016/j.pan.2018.02.010.

43. Capurso G., Signoretti M., Archibugi L. et al. Systematic review and meta-analysis: Small intestinal bacterial overgrowth in chronic pancreatitis. United European Gastroenterol J., 2016, vol. 4, no. 5, pp. 697–705. doi: 10.1177/2050640616630117.

44. Jandhyala S. M., Madhulika A., Deepika G. et al. Altered intestinal microbiota in patients with chronic pancreati-tis: implications in diabetes and metabolic abnormalities. Sci Rep, 2017, vol. 7, pp. 43640. doi: 10.1038/srep43640.

45. Wrzosek L., Miquel S., Noordine M. L. et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii in-fl uence the production of mucus glycans and the de-velopment of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC biology, 2013, vol. 11, pp. 61. doi: 10.1186/1741–7007–11–61.

46. Rossi O., van Berkel L. A., Chain F. et al. Faecalibacterium prausnitzii A2–165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientifi c reports, 2016, vol. 6, pp. 18507. doi: 10.1038/srep18507.

47. Rahib L., Smith B. D., Aizenberg R. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer research, 2014, vol. 74, no. 11, pp. 2913–2921. doi: 10.1158/0008–5472.CAN-14–0155.

48. Kirkegard J., Mortensen F. V., Cronin-Fenton D. Chronic Pancreatitis and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis. Th e American journal of gastroenterology, 2017, vol. 112, no. 9, pp. 366–372. doi: 10.1038/ajg.2017.218.

49. Lowenfels A. B., Maisonneuve P., DiMagno E.P. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst, 1997, vol. 89, no. 6, pp. 442–446. doi: 10.1093/jnci/89.6.442.

50. Duell E. J., Lucenteforte E., Olson S. H. et al. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Annals of oncology: offi cial jour-nal of the European Society for Medical Oncology. ESMO, 2012. Vol. 23, no. 11, pp. 2964–2970. doi: 10.1093/annonc/mds140.

51. Garrett W. S. Cancer and the microbiota. Science, 2015, vol. 348, no. 6230, pp. 80–86. doi: 10.1126/science.aaa4972.

52. Maslowski K. M., Vieira A. T., Ng A. et al. Regulation of infl ammatory responses by gut microbiota and chemoat-tractant receptor GPR43. Nature, 2009, vol. 461, no. 7268, pp. 1282–1286. doi: 10.1038/nature08530.

53. Dejea C. M., Fathi P., Craig J. M. et al. Patients with fa-milial adenomatous polyposis harbor colonic biofi lms containing tumorigenic bacteria. Science (New York, NY), 2018, vol. 359, no. 6375, pp. 592–597. doi: 10.1126/science.aah3648.

54. Dejea C. M., Wick E. C., Hechenbleikner E. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, vol. 111, no. 51, pp. 18321–18326. doi: 10.1073/pnas.1406199111.

55. Iida N., Dzutsev A., Stewart C. A. et al. Commensal bac-teria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, vol. 342, no. 6161, pp. 967–970. doi: 10.1126/science.1240527.

56. Sears C. L., Pardoll D. M. Th e intestinal microbiome infl uences checkpoint blockade. Nature medicine, 2018, vol. 24, no. 3, pp. 254–255. doi: 10.1038/nm.4511.

57. Gopalakrishnan V., Spencer C. N., Nezi L. et al. Gut mi-crobiome modulates response to anti-PD-1 immuno-therapy in melanoma patients. Science (New York, NY), 2018, vol. 359, no. 6371, pp. 97–103. doi: 10.1126/science.aan4236.

58. Routy B., Le Chatelier E., Derosa L. et al. Gut microbi-ome infl uences effi cacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, NY), 2018, vol. 359, no. 6371, pp. 91–97. doi: 10.1126/science.aan3706.

59. Fan X., Alekseyenko A. V., Wu J. et al. Human oral micro-biome and prospective risk for pancreatic cancer: a pop-ulation-based nested case-control study. Gut, 2018, vol. 67, no. 1, pp. 120–127. doi: 10.1136/gutjnl-2016–312580.

60. Michaud D. S., Izard J., Wilhelm-Benartzi C.S. et al. Plasma antibodies to oral bacteria and risk of pancreat-ic cancer in a large European prospective cohort study. Gut, 2013, vol. 62, no. 12, pp. 1764–1770. doi: 10.1136/gutjnl-2012–303006.

61. Torres P. J., Fletcher E. M., Gibbons S. M. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ., 2015, vol. 3. e1373. doi: 10.7717/peerj.1373

62. Chang J. S., Tsai C. R., Chen L. T. et al. Investigating the Association Between Periodontal Disease and Risk of Pancreatic Cancer. Pancreas, 2016, vol. 45, no. 1, pp. 134–141. doi: 10.1097/MPA.0000000000000419.

63. Farrell J. J., Zhang L., Zhou H. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut, 2012, vol. 61, no. 4, pp. 582–588. doi: 10.1136/gutjnl-2011–300784.

64. Geller L. T., Barzily-Rokni M., Danino T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science (New York, NY), 2017, vol. 357, no. 6356, pp. 1156–1160. doi: 10.1126/science.aah5043.

65. Sethi V., Kurtom S., Tarique M. et al. Gut Microbiota Promotes Tumor Growth in Mi ce by Modulating Immune Response. Gastroenterology, 2018, vol. 155, no, 1, pp. 33–37. doi: 10.1053/j.gastro.2018.04.001.

66. Lehouritis P., Cummins J., Stanton M. et al. Local bacteria aff ect the effi cacy of chemotherapeutic drugs. Scientifi c reports, 2015, vol. 5, pp. 14554. doi: 10.1038/srep14554.


Для цитирования:


Ахмедов В.А., Мамедова Н.Ф. Кишечный микробиом и заболевания поджелудочной железы. Экспериментальная и клиническая гастроэнтерология. 2020;(8):107-113. https://doi.org/10.31146/1682-8658-ecg-180-8-107-113

For citation:


Akhmedov V.A., Mamedova N.F. The Gut Microbiome in Pancreatic Disease. Experimental and Clinical Gastroenterology. 2020;(8):107-113. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-180-8-107-113

Просмотров: 72


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)