Pancreatic cancer diagnosis by infrared serum spectroscopy
https://doi.org/10.31146/1682-8658-ecg-176-4-100-106
Abstract
Relevance. The problem of the diff erential diagnosis of pancreatic cancer (PCa) and acute pancreatitis remains relevant throughout the world. The available clinical, laboratory, instrumental preoperative, and often intraoperative, including morphological, data do not always allow us to accurately determine the nature of the focal lesion of the pancreas.
Purpose of the study. To develop a method for the early diagnosis of pancreatic cancer by the method of infrared spectroscopy of blood serum.
Materials and methods. By the method of infrared spectroscopy of blood serum, 30 patients with pancreatic disease were examined: 20 patients with acute pancreatitis, 10 patients with prostate cancer. The control group consisted of healthy volunteers (20 people) without diseases of the pancreas.
The study was carried out by infrared (IR) spectroscopy of a patient’s blood sample in the region of absorption spectra of 1200–1000 cm –1 [31]. As diagnostic parameters, we chose the ratio of the heights of the peaks of the absorption bands on each other: 1165/1150 (Parameter 1), 1165/1090 (Parameter 2), 1165/1080 (Parameter 3), 1165/1070 (Parameter 4), 1165/1050 (Parameter 5).
Results. The values of the parameters of the IR spectra of the blood serum of patients with PCa are signifi cantly lower than the values of the corresponding parameters in acute pancreatitis by 42% (P1), 54% (P2), 53% (P3), 59% (P4), 57% (P5), respectively (p≤0.05). Such a sharp diff erence in IR spectroscopic parameters allowed us to visualize the method and create diff erential diagnostic profi les of pancreatic diseases.
Conclusions. A change in the content of phosphorus-containing compounds (ATP, ADP, AMP) in the blood during acute pancreatitis and PCa causes changes in spectroscopic characteristics. The method of IR spectroscopy allows us to diff erentiate these diseases of the pancreas. IR spectroscopic parameters allow the formation of diff erential diagnostic images of pancreatic cancer and acute pancreatitis and visualize mathematical calculations. The proposed method is non-invasive, that is, it allows without internal intervention in the patient's body to diagnose acute pancreatitis and pancreatic cancer.
About the Authors
O. V. KrasnikovaRussian Federation
Department of General Chemistry, Associate Professor
603005, Nizhny Novgorod, Minin and Pozharsky Square, 10/1
A. S. Gordetsov
Russian Federation
Department of General Chemistry, Professor
603005, Nizhny Novgorod, Minin and Pozharsky Square, 10/1
A. A. Puzankov
Russian Federation
endoscopist, surgeon
603005, Nizhny Novgorod, Nizhnevolzhskaya emb., 2
References
1. Kaprina A. D., Starinsky V. V., Petrova G. V. The status of cancer care for the population of Russia in 2016. Moscow, MNII them. P. A. Herzen, 2017. 236 p. ISBN978–5–85502–231–5.
2. Kabanov M. Yu., Soloviev I. A., Sementsov K. V. et al. Pancreatic cancer – modern views on the problem. Annals of surgical hepatology. 2012, vol.17, no.4, pp. 106–108.
3. Koshel A. P., Klokov S. S., Mironova E. B. Diagnosis and treatment of pancreatic cancer. Reconstructive and plastic surgery issues. 2012, no. 4 (43), рр. 56–59.
4. Zimmerman J. S. Pancreatic cancer: terra incognita of modern gastroenterology. Clinical medicine. 2015, no. 10, рр. 5–13.
5. Medical educational literature. Pathophysiology. Pathophysiology of endocrine pancreatic function, 2012, vol. 2. Available at: https://auno.kz/patofiziologiya-tom-2/205-patofiziologiya-yendokrinnoj-funkcii.html
6. Kosyura S. D., Pavlovskaya E. V., Starodubova A. V. et al. Damage to the pancreas in obesity. Medical business, 2016, no. 3, рр. 100–104.
7. Huser N., Assfalg V., Hartmann D. Diagnosis and surgical treatment of pancreatic cancer. Experimental and clinical gastroenterology, 2011, no. 7, рр. 102–111.
8. Eun S. L., Jeong M. L. Imaging diagnosis of pancreatic cancer: A state-of-the-art review. World J Gastroenterol. 2014; 20(24): 7864–7877.
9. Lisikhin A. A., Maryin E. M., Ponomarenko A. V. Diagnosis of malignant tumors based on blood counts. International Student Scientific Herald, 2016, no. 4–3; URL: http://www.eduherald.ru/en/article/view?id=16255
10. Seleznev S. B., Yesina D. I., Kulikov E. V. Clinical morphology of the pancreas of dogs with ultrasound diagnosis. Bulletin of RUDN University, a series of Agronomy and livestock. 2014, no. 2, рр. 39–50.
11. Shepotin I. B., Lukashenko A. V., Kolesnik E. A. et al. Pancreatic cancer: criteria for resectability. Clinical Oncology, 2011, no. 4, рр. 18–25.
12. Trufanov G. E., Boykov I. V., Ryazanov V. V. et al. Combined positron emission and computed tomography in the characterization of relapses of malignant neoplasms of the chest and abdominal organs. Translational medicine. 2016, no. 3 (5), рр. 95–102.
13. Wood L. D., Itoi T., Takaori K. Pancreatic cancer. The Lancet, 2016, vol. 388, no. 10039, рр. 73–85.
14. Nikulin M. P., Selchuk, V. Yu. Chistyakov S. S. et al. Epidemiological data. Breast cancer “Medical Review”. 2018. no. 3, рр. 1726.
15. Chernousov A. F., Musaev G. Kh., Khorobrykh T. V. et al. Telomerase as a universal marker of pancreatic cancer. Bulletin of surgical gastroenterology. 2011, no. 1, рр. 4–9
16. Chesnokov M. S., Shavochkina D. A., Gorev A. D. et al. Molecular biomarkers of ductal pancreatic adenocarcinoma and the possibility of their use in clinical practice. Molecular medicine. 2013, no. 6, рр. 21–26.
17. Tyulkina D. V., Pleshkan V. V., Alekseenko I. V. et al. Expression of the FAR gene in human non-fibroblast cell lines – creation of tumor-associated fibroblast models. Reports of the Academy of Sciences. 2016, vol. 470, no. 1, рр. 105–107.
18. Stepanova E. V., Feinstein I. A. Expression of molecular biological markers for pancreatic adenocarcinomas. Russian biotherapeutic magazine. 2011, vol. 10, no. 3,
19. рр. 91–94.
20. Sukhwinder K., Lynette М., Smith M. A Combination of MUC5AC and CA19–9 Improves the Diagnosis of Pancreatic Cancer: A Multicenter Study. The American Journal of Gastroenterology, 2017, vol.112, рр. 172–183.
21. Jenkinson C., Elliott V., Menon U. Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer. Journal of Proteomics, 2015, vol. 113, рр. 400–402.
22. Zhang Y., Yang J., Li H. Tumor markers CA19–9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis. Int J Clin Exp Med., 2015, vol. 8(7), рр. 11683–11691.
23. Lazebnik L. B., Vinokurova L. V., Yashina N. I. et al. Chronic pancreatitis and pancreatic cancer. Experimental clinical gastroenterology. 2012, no. 7, рр. 3–9.
24. Issa Y., Kempeneers M. A., H. Santvoort C. Diagnostic performance of imaging modalities in chronic pancreatitis: a systematic review and meta-analysis. European Radiology, 2017. vol.27, no.9, рр. 3820–3844.
25. Gulik T. M., Reeders J. J., Bosma A. Gouma. Incidence and clinical findings of benign, inflammatory disease in patients resected for presumed pancreatic head cancer. Gastrointestinal Endoscopy, 1997, no. 5, рр. 46.
26. Ivashkin V. T., Ivashkin K. V., Okhlobystin A. V. Chronic pancreatitis: questions remain. RZHGGK. 2015, no. 4, рр. 6–14.
27. Kuwahara T., Hirooka Y., Kawashima H. Quantitative diagnosis of chronic pancreatitis using EUS elastography. Journal of Gastroenterology, 2017, vol. 52, no. 5, рр. 868–874.
28. Gulik Т. М., Moojen Т. М., Geenen R., Rauws E. A. Differential diagnosis of focal pancreatitis and pancreatic cancer. Ann Ital Chir., 1999, vol. 70 (2), рр. 217–222.
29. Schulz R., Gille C., Dignass A., Wiedenmann B., Rosewicz S. Prospective study comparing the metabolic status in pancreatic carcinoma and chronic pancreatitis. Clin. Nutr., 2001, рр. 20. GB. ISSN0261–5614
30. Tsymbalyuk V. Yu., Kokueva O. V., Novoselya N. V., Tsymbalyuk I. Yu., Sereda S. A. The state of carbohydrate metabolism and incretin status in the pathology of pancreatoduodenal zone. Kuban Scientific Medical Bulletin. 2010. no. 3–4, рр. 117–118.
31. Kuchuk E. N., Wismont F. I. Pathological physiology of the digestive system: textbook. Method. allowance. Minsk: BSMU, 2010. 34 p. ISBN978–985–528–247–2
32. Gordetsov A. S. Infrared spectroscopy of biological fluids and tissues. Modern technologies in medicine, 2010, no. 1, рр. 84–98.
33. Gordetsov A. S., Petrov M. S., Kukosh M. V., et al. A method for the differential diagnosis of destructive pancreatitis. RF patent № 2253868, IPC G01N33 / 49, 2005.
34. Petrov M. S., Gordetsov A. S. A method for predicting the outcome of destructive pancreatitis. RF patent No. 2277243, IPC G01N33 / 49, 2006.
35. Petrov M. S., Kukosh M. V., Gordetsov A. S. et al. Spectral analysis of blood serum in a comprehensive assessment of the severity of the condition of patients with acute pancreatitis. Nizhny Novgorod Medical Journal. 2004, no. 4, рр. 26–30.
36. Petrov M. S., Gordetsov A. S., Kukosh M. V. Usefulness of spectral analysis in the stratification cation severity of acute pancreatitis. European Journal of Clinical Investigation, 2005, vol. 35(12), рр. 20.
37. Petrov M. S., Gordetsov A. S., Kukosh M. V. Early prediction of severity in acute pancreatitis using infrared spectroscopy of serum. Pancreatology, 2007, no. 7, рр. 451–458.
38. Petrov M. S. Diagnosis and assessment of the severity of acute pancreatitis by infrared spectrometry. Dis. … cand. medical sciences. N. Novgorod, 2005, 23 р
39. Gordetsov A. S., Krasnikova O. V., Puzankov A. A. et al. Method for differential diagnosis of pancreatic diseases: Pat. 2602689 Ros. Federation: IPC G01N33/52, 2016.
40. Krasnikova, O. V. Gordetsov A. S. New opportunities for differential diagnosis of pancreatic diseases using infrared spectroscopy. Modern problems of innovative development of science, collection of articles of the International scientific-practical conference: in 3 parts, 2017, рр. 253–255.
41. Nord C., Eriksson M., Dicker A., Eriksson A., Grong E. Biochemical profi ling of diabetes disease progression by multivariate vibrational microspectroscopy of the pancreas. Scientific reports, 2017, vol. 7, no. 6646, рр. 1–12.
42. Xing L., Shi Q., Zheng K., Shen M. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19–9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Theranostics, 2016, vol. 6(10), рр. 1573–1587.
43. Yia H., Choi Y., Kang K., Hong J. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. Journal of Controlled Release, 2016, vol. 238, рр. 231–241.
44. Krasnikova O. V. Physiological analysis of infrared spectra of animal blood plasma is normal and in experimental oncogenesis: Diss. ... cand. biol. sciences. Nizhny Novgorod: NNSU, 2012 . – 133 p
Review
For citations:
Krasnikova O.V., Gordetsov A.S., Puzankov A.A. Pancreatic cancer diagnosis by infrared serum spectroscopy. Experimental and Clinical Gastroenterology. 2020;174(4):100-106. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-176-4-100-106