Хроническая болезнь почек приводит к истощению скелетной мускулатуры
https://doi.org/10.31146/1682-8658-ecg-235-3-104-118
Аннотация
Об авторах
С. В. БулгаковаРоссия
Д. П. Курмаев
Россия
Е. В. Тренева
Россия
Список литературы
1. Andreev D.A., Kamynina N.N. Modern Trends, Examples and Methods for Assessing Physical Activity of City Residents. City Healthсare. 2024;5(2):125-139. doi: 10.47619/2713-2617.zm.2024.v.5i2;125-139.@@ Андреев Д.А., Камынина Н.Н. Современные направления, примеры и методы оценки физической активности населения мегаполисов. Здоровье мегаполиса. 2024;5(2):125-139. doi: 10.47619/2713-2617.zm.2024.v.5i2;125-139.
2. Tkacheva O.N., Kotovskaya Yu.V., Runikhina N.K. et al. Clinical guidelines on frailty.Russian Journal of Geriatric Medicine. 2020;(1):11-46. (In Russ.) doi: 10.37586/2686-8636-1-2020-11-46.@@ Ткачева О.Н., Котовская Ю.В., Рунихина Н.К. и др. Клинические рекомендации «Старческая астения». Российский журнал гериатрической медицины. 2020;(1):11-46. doi: 10.37586/2686-8636-1-2020-11-46.
3. Kotova M.B., Maksimov S.A., Shalnova S.A. et al. Levels and types of physical activity in Russia according to the ESSE-RF study: is there a trace of the COVID-19 pandemic? Cardiovascular Therapy and Prevention. 2023;22(8S):3787. (In Russ.) doi: 10.15829/1728-8800-2023-3787.@@ Котова М.Б., Максимов С.А., Шальнова С.А. и др. Уровни и виды физической активности в России по данным исследования ЭССЕ-РФ: есть ли след пандемии COVID-19? Кардиоваскулярная терапия и профилактика. 2023;22(8S):3787. doi: 10.15829/1728-8800-2023-3787.
4. Kurmaev D.P., Bulgakova S.V., Treneva E.V. et al. Possibilities of using branched-chain amino acids for the treatment and prevention of sarcopenia in elderly and old patients (literature review). Acta Biomedica Scientifica. 2023;8(3):106-114. doi: 10.29413/ABS.2023-8.3.11.@@ Курмаев Д.П., Булгакова С.В., Тренева Е.В. и др. Возможности применения аминокислот с разветвлёнными боковыми цепями (BCAA) для лечения и профилактики саркопении у пациентов пожилого и старческого возраста (обзор литературы). Acta Biomedica Scientifica. 2023;8(3):106-114. doi: 10.29413/ABS.2023-8.3.11. []
5. Ivannikova E.V., Dudinskaya E.N., Onuchina Yu.S. Muscle metabolism in older adults.Russian Journal of Geriatric Medicine. 2022;(2):96-102. (In Russ.) doi: 10.37586/2686-8636-2-2022-96-102.@@ Иванникова Е.В., Дудинская Е.Н., Онучина Ю.С. Метаболизм мышечной ткани у лиц пожилого возраста. Российский журнал гериатрической медицины. 2022;(2):96-102. doi: 10.37586/2686-8636-2-2022-96-102.
6. Naumov A.V., Khovasova N.O., Moroz V.I. et al. Locomotive syndrome: a new view of fragility in older age.Russian Journal of Geriatric Medicine. 2021;(3):372-378. (In Russ.) doi: 10.37586/2686-8636-3-2021-364-370.@@ Наумов А.В., Ховасова Н.О., Мороз В.И., и др. Локомотивный синдром: новое представление о хрупкости в пожилом возрасте. Российский журнал гериатрической медицины. 2021;(3):372-378. doi: 10.37586/2686-8636-3-2021-364-370.
7. Sergeeva V.A., Runikhina N.K. Pathogenetic and Clinical Relationships between Chronic Obstructive Pulmonary Disease, Sarcopenia and Frailty.Russian Journal of Geriatric Medicine. 2024;(1):40-48. (In Russ.) doi: 10.37586/2686-8636-1-2024-40-48.@@ Сергеева В.А., Рунихина Н.К. Патогенетические и клинические взаимосвязи хронической обструктивной болезни легких, саркопении и старческой астении. Российский журнал гериатрической медицины. 2024;(1):40-48. doi: 10.37586/2686-8636-1-2024-40-48.
8. Samoilova Yu.G., Matveeva M.V., Khoroshunova E.A. et al. Cardiometabolic risk factors in patients with type 2 diabetes and sarcopenia. Cardiovascular Therapy and Prevention. 2024;23(1):3655. (In Russ.) doi: 10.15829/1728-8800-2024-3655.@@ Самойлова Ю.Г., Матвеева М.В., Хорошунова Е.А. и др. Кардиометаболические факторы риска у пациентов с сахарным диабетом 2 типа и саркопенией. Кардиоваскулярная терапия и профилактика. 2024;23(1):3655. doi: 10.15829/1728-8800-2024-3655.
9. Pleshchev I.E., Achkasov E.E., Nikolenko V.N. et al. Methods of physical rehabilitation of elderly people for the prevention and treatment of sarcopenia. Acta biomedica scientifica. 2023; 8(2): 80-92. (In Russ.) doi: 10.29413/ABS.2023-8.2.8.@@ Плещёв И.Е., Ачкасов Е.Е., Николенко В.Н. и др. Роль и специфика физических нагрузок при саркопении у пожилых людей. Acta biomedica scientifica. 2023; 8(2): 80-92. doi: 10.29413/ABS.2023-8.2.8.
10. Berns S.A., Sheptulina A.F., Mamutova E.M. et al. Sarcopenic obesity: epidemiology, pathogenesis and diagnostic criteria. Cardiovascular Therapy and Prevention. 2023;22(6):3576. (In Russ.) doi: 10.15829/1728-8800-2023-3576.@@ Бернс С.А., Шептулина А.Ф., Мамутова Э.М. и др. Саркопеническое ожирение: эпидемиология, патогенез и особенности диагностики. Кардиоваскулярная терапия и профилактика. 2023;22(6):3576. doi: 10.15829/1728-8800-2023-3576.
11. Cruz-Jentoft A.J., Bahat G., Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi: 10.1093/ageing/afy169.
12. Tkacheva O.N., Kotovskaya Yu.V., Bobkova I.N. et al. Chronic Kidney Disease in Older Adults. Consensus Statement of Russian Association of Gerontologists and Geriatricians, Scientific Society of Nephrologists of Russia and Eurasian Association of Therapists.Russian Journal of Geriatric Medicine. 2024;(1):6-20. (In Russ.) doi: 10.37586/2686-8636-1-2024-6-20.@@ Ткачева О.Н., Котовская Ю.В., Бобкова И.Н. и др. Хроническая болезнь почек у пациентов пожилого и старческого возраста. Согласованное мнение экспертов Российской ассоциации геронтологов и гериатров, Научного общества нефрологов России и Евразийской ассоциации терапевтов. Российский журнал гериатрической медицины. 2024;(1):6-20. doi: 10.37586/2686-8636-1-2024-6-20.
13. Merkusheva L.I., Runikhina N.K., Tkacheva O.N. Kidney aging.Geriatric view.Russian Journal of Geriatric Medicine. 2021;(1):76-81. (In Russ.) doi: 10.37586/2686-8636-1-2021-76-81.@@ Меркушева Л.И., Рунихина Н.К., Ткачева О.Н. Старение почки. Взгляд гериатра. Российский журнал гериатрической медицины. 2021;(1):76-81. doi: 10.37586/2686-8636-1-2021-76-81.
14. Gollie J.M., Ryan A.S., Sen S. et al. Exercise for patients with chronic kidney disease: from cells to systems to function. Am J Physiol Renal Physiol. 2024;326(3): F420-F437. doi: 10.1152/ajprenal.00302.2023.
15. Lee S.M., Han M.Y., Kim S.H. et al. Indoxyl Sulfate Might Play a Role in Sarcopenia, While Myostatin Is an Indicator of Muscle Mass in Patients with Chronic Kidney Disease: Analysis from the RECOVERY Study. Toxins (Basel). 2022;14(10):660. Published 2022 Sep 23. doi: 10.3390/toxins14100660.
16. Lavrishcheva I.V., Rumyantsev A. Sh., Kulaeva N.N., Somova V.M. Sarcopenia is an actual problem in chronic kidney disease of the 5d stage. Nephrology (Saint-Petersburg). 2020;24(1):60-66. (In Russ.) doi: 10.36485/1561-6274-2020-24-1-60-66.@@ Лаврищева Ю.В., Румянцев А.Ш., Кулаева Н.Н., Сомова В.М. Саркопения - актуальная проблема при хронической болезни почек 5д стадии. Нефрология 2020;24(1):60-66. doi: 10.36485/1561-6274-2020-24-1-60-66.
17. Okamura M., Konishi M., Butler J., Kalantar-Zadeh K., von Haehling S., Anker S.D. Kidney function in cachexia and sarcopenia: Facts and numbers. J Cachexia Sarcopenia Muscle. 2023 Aug;14(4):1589-1595. doi: 10.1002/jcsm.13260.
18. Fouque D., Kalantar-Zadeh K., Kopple J. et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391-398. doi: 10.1038/sj.ki.5002585.
19. Hanna R.M., Ghobry L., Wassef O., Rhee C.M., Kalantar-Zadeh K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020;49(1-2):202-211. doi: 10.1159/000504240.
20. Mori K. Maintenance of Skeletal Muscle to Counteract Sarcopenia in Patients with Advanced Chronic Kidney Disease and Especially Those Undergoing Hemodialysis. Nutrients. 2021;13(5):1538. Published 2021 May 2. doi: 10.3390/nu13051538.
21. Pupim L.B., Caglar K., Hakim R.M., Shyr Y., Ikizler T.A. Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int. 2004;66(5):2054-2060. doi: 10.1111/j.1523-1755.2004.00978.x.
22. Mak R.H., Cheung W., Cone R.D., Marks D.L. Mechanisms of disease: Cytokine and adipokine signaling in uremic cachexia. Nat Clin Pract Nephrol. 2006;2(9):527-534. doi: 10.1038/ncpneph0273.
23. Herselman M., Moosa M.R., Kotze T.J., Kritzinger M., Wuister S., Mostert D. Protein-energy malnutrition as a risk factor for increased morbidity in long-term hemodialysis patients. J Ren Nutr. 2000;10(1):7-15. doi: 10.1016/s1051-2276(00)90017-7.
24. Kalantar-Zadeh K., Ikizler T.A., Block G., Avram M.M., Kopple J.D. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis. 2003;42(5):864-881. doi: 10.1016/j.ajkd.2003.07.016.
25. Verzola D., Barisione C., Picciotto D., Garibotto G., Koppe L. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019;95(3):506-517. doi: 10.1016/j.kint.2018.10.010.
26. Janssen I., Heymsfield S.B., Wang Z.M., Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr [published correction appears in J Appl Physiol (1985). 2014 May 15;116(10):1342]. J Appl Physiol. (1985). 2000;89(1):81-88. doi: 10.1152/jappl.2000.89.1.81.
27. Nilwik R., Snijders T., Leenders M. et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013;48(5):492-498. doi: 10.1016/j.exger.2013.02.012.
28. Verdijk L.B., Koopman R., Schaart G., Meijer K., Savelberg H.H., van Loon L.J. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007;292(1): E151-E157. doi: 10.1152/ajpendo.00278.2006.
29. Mohanasundaram S., Fernando E. Uremic Sarcopenia. Indian J Nephrol. 2022;32(5):399-405. doi: 10.4103/ijn.ijn_445_21.
30. Sun D.F., Chen Y., Rabkin R. Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia. Kidney Int. 2006;70(3):453-459. doi: 10.1038/sj.ki.5001532.
31. Xu J., Li R., Workeneh B., Dong Y., Wang X., Hu Z. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 2012;82(4):401-411. doi: 10.1038/ki.2012.84.
32. Sato E., Mori T., Mishima E. et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep. 2016;6:36618. Published 2016 Nov 10. doi: 10.1038/srep36618.
33. Clyne N., Esbjörnsson M., Jansson E., Jogestrand T., Lins L.E., Pehrsson S.K. Effects of renal failure on skeletal muscle. Nephron. 1993;63(4):395-399. doi: 10.1159/000187241.
34. Lewis M.I., Fournier M., Wang H. et al. Metabolic and morphometric profile of muscle fibers in chronic hemodialysis patients. J Appl Physiol. (1985). 2012;112(1):72-78. doi: 10.1152/japplphysiol.00556.2011.
35. McGregor R.A., Cameron-Smith D., Poppitt S.D. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 2014;3(1):9. Published 2014 Dec 1. doi: 10.1186/2046-2395-3-9.
36. Goodpaster B.H., Kelley D.E., Thaete F.L., He J., Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985). 2000;89(1):104-110. doi: 10.1152/jappl.2000.89.1.104.
37. Wilkinson T.J., Gould D.W., Nixon D.G.D., Watson E.L., Smith A.C. Quality over quantity? Association of skeletal muscle myosteatosis and myofibrosis on physical function in chronic kidney disease. Nephrol Dial Transplant. 2019;34(8):1344-1353. doi: 10.1093/ndt/gfy139.
38. Nigwekar S.U., Tamez H., Thadhani R.I. Vitamin D and chronic kidney disease-mineral bone disease (CKD-MBD). Bonekey Rep. 2014;3:498. Published 2014 Feb 5. doi: 10.1038/bonekey.2013.232.
39. Ceglia L. Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care. 2009;12(6):628-633. doi: 10.1097/MCO.0b013e328331c707.
40. Agranovich N.V., Pilipovich L.A., Albotova L.V., Klassova A.T. About the question of vitamin D defi ciency in chronic kidney disease. Literature review. Nephrology (Saint-Petersburg). 2019; 23 (3): 21-28 (In Russ.). doi: 10.24884/1561-6274-2019-23-3-21-28.@@ Агранович Н.В., Пилипович Л.А., Алботова Л.В., Классова А.Т. К вопросу о дефиците витамина D при хронической болезни почек. Литературный обзор. Нефрология. 2019; 23 (3): 21-28. doi: 10.24884/1561-6274-2019-23-3-21-28.
41. Molina P., Carrero J.J., Bover J. et al. Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle. 2017;8(5):686-701. doi: 10.1002/jcsm.12218.
42. Srikuea R., Zhang X., Park-Sarge O.K., Esser K.A. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol. 2012;303(4): C396-C405. doi: 10.1152/ajpcell.00014.2012.
43. Garcia L.A., King K.K., Ferrini M.G., Norris K.C., Artaza J.N. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152(8):2976-2986. doi: 10.1210/en.2011-0159.
44. Girgis C.M., Cha K.M., Houweling P.J. et al. Vitamin D Receptor Ablation and Vitamin D Deficiency Result in Reduced Grip Strength, Altered Muscle Fibers, and Increased Myostatin in Mice. Calcif Tissue Int. 2015;97(6):602-610. doi: 10.1007/s00223-015-0054-x.
45. Endo I., Inoue D., Mitsui T. et al. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology. 2003;144(12):5138-5144. doi: 10.1210/en.2003-0502.
46. Acevedo L.M., López I., Peralta-Ramírez A. et al. High-phosphorus diet maximizes and low-dose calcitriol attenuates skeletal muscle changes in long-term uremic rats. J Appl Physiol (1985). 2016;120(9):1059-1069. doi: 10.1152/japplphysiol.00957.2015.
47. Olsson K., Saini A., Strömberg A. et al. Evidence for Vitamin D Receptor Expression and Direct Effects of 1α,25(OH)2D3 in Human Skeletal Muscle Precursor Cells. Endocrinology. 2016;157(1):98-111. doi: 10.1210/en.2015-1685.
48. Kim M.K., Baek K.H., Song K.H. et al. Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. J Clin Endocrinol Metab. 2011;96(10):3250-3256. doi: 10.1210/jc.2011-1602.
49. Sanders K.M., Scott D., Ebeling P.R. Vitamin D deficiency and its role in muscle-bone interactions in the elderly. Curr Osteoporos Rep. 2014;12(1):74-81. doi: 10.1007/s11914-014-0193-4.
50. Hung K.C., Yao W.C., Liu Y.L. et al. The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease. Biomedicines. 2023;11(7):2076. Published 2023 Jul 24. doi: 10.3390/biomedicines11072076.
51. Lin C.J., Wu V., Wu P.C., Wu C.J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS One. 2015;10(7): e0132589. Published 2015 Jul 14. doi: 10.1371/journal.pone.0132589.
52. Watanabe H., Miyamoto Y., Honda D. et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83(4):582-592. doi: 10.1038/ki.2012.448.
53. Lin Y.L., Liu C.H., Lai Y.H. et al. Association of Serum Indoxyl Sulfate Levels with Skeletal Muscle Mass and Strength in Chronic Hemodialysis Patients: A 2-year Longitudinal Analysis. Calcif Tissue Int. 2020;107(3):257-265. doi: 10.1007/s00223-020-00719-x.
54. Caldiroli L., Armelloni S., Eskander A. et al. Association between the uremic toxins indoxyl-sulfate and p-cresyl-sulfate with sarcopenia and malnutrition in elderly patients with advanced chronic kidney disease. Exp Gerontol. 2021;147:111266. doi: 10.1016/j.exger.2021.111266.
55. Margiotta E., Caldiroli L., Callegari M.L. et al. Association of Sarcopenia and Gut Microbiota Composition in Older Patients with Advanced Chronic Kidney Disease, Investigation of the Interactions with Uremic Toxins, Inflammation and Oxidative Stress. Toxins (Basel). 2021;13(7):472. Published 2021 Jul 8. doi: 10.3390/toxins13070472.
56. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997 May 1;387(6628):83-90. doi: 10.1038/387083a0.
57. Bataille S., Chauveau P., Fouque D., Aparicio M., Koppe L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transplant. 2021;36(11):1986-1993. doi: 10.1093/ndt/gfaa129.
58. Cowley B.D. Jr., Grantham J.J., Muessel M.J., Kraybill A.L., Gattone V.H. 2nd. Modification of disease progression in rats with inherited polycystic kidney disease. Am J Kidney Dis. 1996;27(6):865-879. doi: 10.1016/s0272-6386(96)90525-9.
59. Moe S.M., Chen N.X., Seifert M.F. et al. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009;75(2):176-184. doi: 10.1038/ki.2008.456.
60. Organ J.M., Srisuwananukorn A., Price P. et al. Reduced skeletal muscle function is associated with decreased fiber cross-sectional area in the Cy/+ rat model of progressive kidney disease. Nephrol Dial Transplant. 2016;31(2):223-230. doi: 10.1093/ndt/gfv352.
61. Avin K.G., Chen N.X., Organ J.M. et al. Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease. PLoS One. 2016;11(8): e0159411. Published 2016 Aug 3. doi: 10.1371/journal.pone.0159411.
62. Enoki Y., Watanabe H., Arake R. et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep. 2016;6:32084. Published 2016 Aug 23. doi: 10.1038/srep32084.
63. Zamora E., Galán A., Simó R. Papel de la miostatina en la afectación muscular asociada a las enfermedades crónicas [Role of myostatin in wasting syndrome associated with chronic diseases]. Med Clin (Barc). 2008;131(15):585-590. doi: 10.1157/13128019.
64. Baczek J., Silkiewicz M., Wojszel Z.B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients. 2020;12(8):2401. Published 2020 Aug 11. doi: 10.3390/nu12082401.
65. Alexopoulos T., Vasilieva L., Kontogianni M.D. et al. Myostatin in combination with creatine phosphokinase or albumin may differentiate patients with cirrhosis and sarcopenia. Am J Physiol Gastrointest Liver Physiol. 2021;321(5): G543-G551. doi: 10.1152/ajpgi.00184.2021.
66. Kuzyarova A.S., Gasanov M.Z., Batyushin M.M. et al. Molecular bases of muscular definition: the role of myostatin and proteinkinase β in progression of protein-energy waste in patients on hemodialysis. The Russian Archives of Internal Medicine. 2019;9(2): 126-132. (In Russ.) doi: 10.20514/2226-6704-2019-9-2-126-132.@@ Кузярова А.С., Гасанов М.З., Батюшин М.М. и др. Молекулярные основы мышечного истощения: роль миостатина и протеинкиназы β в прогрессировании белково-энергетической недостаточности у пациентов на гемодиализе. Архивъ внутренней медицины. 2019; 9(2): 126-132. doi: 10.20514/2226-6704-2019-9-2-126-132.
67. Trobec K., von Haehling S., Anker S.D., Lainscak M. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia. J Cachexia Sarcopenia Muscle. 2011;2(4):191-200. doi: 10.1007/s13539-011-0043-5.
68. Mehls O., Tönshoff B., Blum W.F., Heinrich U., Seidel C. Growth hormone and insulin-like growth factor I in chronic renal failure - pathophysiology and rationale for growth hormone treatment. Acta Paediatr Scand Suppl. 1990;370:28-35. doi: 10.1111/j.1651-2227.1990.tb11666.x.
69. Garibotto G., Russo R., Sofia A. et al. Effects of uremia and inflammation on growth hormone resistance in patients with chronic kidney diseases. Kidney Int. 2008;74(7):937-945. doi: 10.1038/ki.2008.345.
70. Pupim L.B., Flakoll P.J., Yu C., Ikizler T.A. Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients. Am J Clin Nutr. 2005;82(6):1235-1243. doi: 10.1093/ajcn/82.6.1235.
71. Coleman M.E., DeMayo F., Yin K.C. et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995;270(20):12109-12116. doi: 10.1074/jbc.270.20.12109.
72. DeVol. D.L., Rotwein P., Sadow J.L., Novakofski J., Bechtel P.J. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol. 1990;259(1 Pt 1): E89-E95. doi: 10.1152/ajpendo.1990.259.1.E89.
73. Mori K., Giovannone B., Smith R.J. Distinct Grb10 domain requirements for effects on glucose uptake and insulin signaling. Mol Cell Endocrinol. 2005;230(1-2):39-50. doi: 10.1016/j.mce.2004.11.004.
74. Gellhaus B., Böker K.O., Schilling A.F., Saul D. Therapeutic Consequences of Targeting the IGF-1/PI3K/AKT/FOXO3 Axis in Sarcopenia: A Narrative Review. Cells. 2023;12(24):2787. Published 2023 Dec 7. doi: 10.3390/cells12242787.
75. Gasanov M.Z. Molecular aspects of sarcopenia pathogenesis in chronoc kidney disease: integrated role of mTOR. Nephrology (Saint-Petersburg). 2018; 22 (5): 9-16 (In Russ.) doi: 10.24884/1561-6274-2018-22-5-9-16.@@ Гасанов М.З. Молекулярные аспекты патогенеза саркопении при хронической болезни почек: интегративная роль mTOR. Нефрология 2018; 22 (5): 9-16. doi: 10.24884/1561-6274-2018-22-5-9-16.
76. Liu L., Hu R., You H. et al. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease. J Cell Mol Med. 2021;25(3):1493-1506. doi: 10.1111/jcmm.16238.
77. Wang H., Casaburi R., Taylor W.E., Aboellail H., Storer T.W., Kopple J.D. Skeletal muscle mRNA for IGF-IEa, IGF-II, and IGF-I receptor is decreased in sedentary chronic hemodialysis patients. Kidney Int. 2005;68(1):352-361. doi: 10.1111/j.1523-1755.2005.00409.x.
78. Zhang L., Wang X.H., Wang H., Du J., Mitch W.E. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol. 2010;21(3):419-427. doi: 10.1681/ASN.2009060571.
79. Johansen K.L., Chertow G.M., Ng A.V. et al. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int. 2000;57(6):2564-2570. doi: 10.1046/j.1523-1755.2000.00116.x.
80. Fujita S., Rasmussen B.B., Cadenas J.G. et al. Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes. 2007;56(6):1615-1622. doi: 10.2337/db06-1566.
81. Wang X.H., Du J., Klein J.D., Bailey J.L., Mitch W.E. Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int. 2009;76(7):751-759. doi: 10.1038/ki.2009.260.
82. Molsted S., Andersen J.L., Harrison A.P., Eidemak I., Mackey A.L. Fiber type-specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients. Muscle Nerve. 2015;52(5):736-745. doi: 10.1002/mus.24633.
83. Hull K.L., Abell L., Adenwalla S.F. et al. Impact of physical activity on surrogate markers of cardiovascular disease in the haemodialysis population. Clin Kidney J. 2024;17(7): sfae198. Published 2024 Jun 28. doi: 10.1093/ckj/sfae198.
Рецензия
Для цитирования:
Булгакова С.В., Курмаев Д.П., Тренева Е.В. Хроническая болезнь почек приводит к истощению скелетной мускулатуры. Экспериментальная и клиническая гастроэнтерология. 2025;(3):104-118. https://doi.org/10.31146/1682-8658-ecg-235-3-104-118
For citation:
Bulgakova S.V., Kurmaev D.P., Treneva E.V. Chronic kidney disease leads to skeletal muscle wasting. Experimental and Clinical Gastroenterology. 2025;(3):104-118. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-235-3-104-118



































