Неочевидная близость между метаболическим синдромом, когнитивным дефицитом, астроцитарной дисфункцией и глимфатической активностью мозга: общие закономерности и связи
https://doi.org/10.31146/1682-8658-ecg-235-3-44-54
Аннотация
Об авторах
И. В. ШиролаповРоссия
А. В. Захаров
Россия
О. Н. Павлова
Россия
О. В. Борисова
Россия
С. В. Булгакова
Россия
Д. П. Курмаев
Россия
Список литературы
1. Eckel R.H., Alberti K.G., Grundy S.M., Zimmet P.Z. The metabolic syndrome. Lancet. 2010;375(9710):181-3. doi: 10.1016/S0140-6736(09)61794-3.
2. Lemieux I., Després J.P. Metabolic syndrome: past, present and future. Nutrients. 2020;12:3501. doi: 10.3390/nu12113501
3. Capucho A.M., Chegão A., Martins F.O., Vicente Miranda H., Conde S.V. Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients. 2022;14(7):1425. doi: 10.3390/nu14071425.
4. Shirolapov I.V., Zakharov A.V., Bulgakova S.V. et al. Glymphatic dysfunction in the pathogenesis of neurodegenerative diseases and pathological aging. Genes and cells. 2023;18(4):309-322. (In Russ.). doi: 10.23868/gc546022.@@ Широлапов И.В., Захаров А.В., Булгакова С.В. и др. Глимфатическая дисфункция в патогенезе нейродегенеративных заболеваний и патологического старения. Гены и клетки. 2023;18(4):309-322. doi: 10.23868/gc546022.
5. Cooper M.L., Pasini S., Lambert W.S. et al. Redistribution of metabolic resources through astrocyte networks mitigates neurodegenerative stress. Proc Natl Acad Sci U.S.A. 2020;117:18810. doi: 10.1073/pnas.2009425117.
6. Ding Z.B., Song L.J., Wang Q. et al. Astrocytes: A double-edged sword in neurodegenerative diseases. Neural Regener Res. 2021;16:1702-1710. doi: 10.4103/1673-5374.306064.
7. Alberti K.G., Zimmet P., Shaw J. The metabolic syndrome - a new worldwide definition. Lancet. 2005;366:1059-1062. doi: 10.1016/s0140-6736(05)67402-8.
8. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20:12. doi: 10.1007/s11906-018-0812-z.
9. Sharonova L.A., Bulgakova S.V., Dolgikh Yu.A. et al. Obesity as a main component of metabolic syndrome and a risk factor for comorbidity. Experimental and Clinical Gastroenterology. 2024;(2):101-110. (In Russ.) doi: 10.31146/1682-8658-ecg-222-2-101-110.@@ Шаронова Л.А., Булгакова С.В., Долгих Ю.А. и др. Ожирение как основной компонент метаболического синдрома и фактор риска коморбидности. Экспериментальная и клиническая гастроэнтерология. 2024;(2):101-110. doi: 10.31146/1682-8658-ecg-222-2-101-110.
10. Livingston J.M., McDonald M.W., Gagnon T. et al. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis. 2020;137:104756. doi: 10.1016/j.nbd.2020.104756.
11. Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 2017;960:1-17. doi: 10.1007/978-3-319-48382-5_1.
12. Ivanov S.V., Uspenskiy Yu.P., Fominikh Yu.A. Metabolic syndrome: from anthropoid primate to human. Experimental and Clinical Gastroenterology. 2017;(7):135-140. (In Russ.)@@ Иванов С.В., Успенский Ю.П., Фоминых Ю.А. Метаболический синдром: от человекообразного примата до человека. Экспериментальная и клиническая гастроэнтерология. 2017;(7):135-140.
13. Kassi E., Pervanidou P., Kaltsas G., Chrousos G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011;9:48. doi: 10.1186/1741-7015-9-48.
14. Kytikova O.Y., Antonyuk M.V., Kantur T.A., Novgorodtseva T.P., Denisenko Y.K. Prevalence and biomarkers in metabolic syndrome. Obesity and metabolism. 2021;18(3):302-312. (In Russ.) doi: 10.14341/omet12704.@@ Кытикова О.Ю., Антонюк М.В., Кантур Т.А., Новгородцева Т.П., Денисенко Ю.К. Распространенность и биомаркеры метаболического синдрома. Ожирение и метаболизм. 2021;18(3):302-312. doi: 10.14341/omet12704.
15. Farooqui A.A., Farooqui T., Panza F., Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell. Mol. Life Sci. 2012;69:741-762. doi: 10.1007/s00018-011-0840-1.
16. Shirolapov I., Zakharov A., Smirnova D., Khivintseva E., Sergeeva M. Aging brain, Dementia and Impaired Glymphatic Pathway: causal relationships. Psychiatria Danubina. 2023;35(Suppl. 2):236-244. PMID: 37800234
17. Martemucci G., Fracchiolla G., Muraglia M. et al. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel). 2023;12(12):2091. doi: 10.3390/antiox12122091.
18. Shirolapov I.V., Zakharov A.V., Shishkina A.A. et al. Efficiency of computerized cognitive training for prevention of cognitive impairments and stimulation of neuroplasticity. Adv Gerontol. 2024;37(3):221-229. (In Russ.). doi: 10.34922/AE.2024.37.3.007.@@ Широлапов И.В., Захаров А.В., Шишкина А.А. и др. Эффективность компьютеризированного когнитивного тренинга для профилактики когнитивных нарушений и стимуляции нейропластичности. Успехи геронтологии. 2024;37(3):221-229. doi: 10.34922/AE.2024.37.3.007.
19. Guarino A., Forte G., Giovannoli J., Casagrande M. Executive functions in the elderly with mild cognitive impairment: a systematic review on motor and cognitive inhibition, conflict control and cognitive flexibility. Aging Ment Health. 2020;24(7):1028-1045. doi: 10.1080/13607863.2019.1584785.
20. Strelnik A., Strelnik S., Markina E. et al. The Effects of Transcranial Magnetic Stimulation on Cognitive Functioning in Bipolar Depression: A Systematic Review. Psychiatr Danub. 2022;34(Suppl 8):179-188.
21. Nedergaard M., Goldman S.A. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(65120:50-56. doi: 10.1126/science.abb8739.
22. Shirolapov I.V., Zakharov A.V., Smirnova D.A., Lyamin A.V., Gayduk A. Ya. The significance of the glymphatic pathway in the relationship between the sleep-wake cycle and neurodegenerative diseases. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2023;123(9):31-36. (In Russ.) doi: 10.17116/jnevro202312309131.@@ Широлапов И.В., Захаров А.В., Смирнова Д.А., Лямин А.В., Гайдук А.Я. Роль глимфатического клиренса в механизмах взаимосвязи цикла сон-бодрствование и развития нейродегенеративных процессов. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023;123(9):31-36. doi: 10.17116/jnevro202312309131.
23. Kuts A., Poluektov M., Zakharov A. et al. Clinical and neurophysiological characteristics of 89 patients with narcolepsy and cataplexy from the Russian Narcolepsy Network. J Clin Sleep Med. 2023;19(2):355-359. doi: 10.5664/jcsm.10340.
24. Diack A.B., Alibhai J.D., Barron R. et al. Insights into Mechanisms of Chronic Neurodegeneration.International Journal of Molecular Sciences. 2016;17(1):82. doi: 10.3390/ijms17010082.
25. Frolov N., Pitsik E., Grubov V. et al. Perceptual Integration Compensates for Attention Deficit in Elderly during Repetitive Auditory-Based Sensorimotor Task. Sensors (Basel). 2023;23(14):6420. doi: 10.3390/s23146420.
26. Kouvari M., D’Cunha N.M., Travica N. et al. Metabolic syndrome, cognitive impairment and the role of diet: A narrative review. Nutrients. 2022;14:333. doi: 10.3390/nu14020333.
27. Fakih W., Zeitoun R., AlZaim I. et al. Early metabolic impairment as a contributor to neurodegenerative disease: mechanisms and potential pharmacological intervention. Obesity. 2022;30:982-993. doi: 10.1002/oby.23400.
28. O’Brien P.D., Hinder L.M., Callaghan B.C., Feldman E.L. Neurological consequences of obesity. Lancet Neurol. 2017;16(6):465-477. doi: 10.1016/S1474-4422(17)30084-4.
29. Biessels G.J., Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. doi: 10.1038/s41574-018-0048-7.
30. Kellar D., Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758-766. doi: 10.1016/S1474-4422(20)30231-3.
31. Butterfield D.A., Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148-160. doi: 10.1038/s41583-019-0132-6.
32. Kazlauskaite R., Janssen I., Wilson R.S. et al. Is midlife metabolic syndrome associated with cognitive function change? The study of women’s health across the nation. J Clin Endocrinol Metab. 2020;105: e1093-1105. doi: 10.1210/clinem/dgaa067.
33. Qureshi D., Collister J., Allen N.E., Kuzma E, Littlejohns T. Association between metabolic syndrome and risk of incident dementia in uk biobank. Alzheimers Dement. 2024;20:447-458. doi: 10.1002/alz.13439.
34. Pedditzi E., Peters R., Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14-21. doi: 10.1093/ageing/afv151.
35. Kotkowski E., Price L.R., Franklin C. et al. A neural signature of metabolic syndrome. Hum Brain Mapp. 2019;40:3575-3588. doi: 10.1002/hbm.24617.
36. Feinkohl I., Janke J., Hadzidiakos D. et al. Associations of the metabolic syndrome and its components with cognitive impairment in older adults. BMC Geriatr. 2019;19(1):77. doi: 10.1186/s12877-019-1073-7.
37. Arnold S.E., Arvanitakis Z., Macauley-Rambach S.L. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14(3):168-181. doi: 10.1038/nrneurol.2017.185.
38. Mallorquí-Bagué N., Lozano-Madrid M., Toledo E. et al. Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep. 2018;8(1):16128. doi: 10.1038/s41598-018-33843-8.
39. Bulgakova S.V., Merzlova P. Ya., Kurmaev D.P., Treneva E.V. Correlation of Hypoglycemia and Cognitive Impairment in Older Patients with Type 2 Diabetes Mellitus.Russian Journal of Geriatric Medicine. 2024;(2):108-116. (In Russ.) doi: 10.37586/2686-8636-2-2024-108-116.@@ Булгакова С.В., Мерзлова П.Я., Курмаев Д.П., Тренева Е.В. Взаимосвязь гипогликемии и когнитивных нарушений у пожилых пациентов с сахарным диабетом 2 типа. Российский журнал гериатрической медицины. 2024;(2):108-116. doi: 10.37586/2686-8636-2-2024-108-116.
40. Wong M.W., Braidy N., Poljak A. et al. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement. 2017;13:810-827. doi: 10.1016/j.jalz.2017.01.008.
41. Marin R., Fabelo N., Fernández-Echevarría C., Canerina-Amaro A. et al. Lipid Raft Alterations in Aged-Associated Neuropathologies. Curr. Alzheimer Res. 2016;13:973-984. doi: 10.2174/1567205013666160314150017.
42. Grassi S., Giussani P., Mauri L. et al. Lipid rafts and neurodegeneration: Structural and functional roles in physiologic aging and neurodegenerative diseases. J. Lipid Res. 2020;61:636-654. doi: 10.1194/jlr.TR119000427.
43. Pedersen K.M., Cordua S., Hasselbalch H.C., Ellervik C. The association between circulating inflammatory markers and metabolic syndrome: A general population study. Blood. 2018;132:4305. doi: 10.1182/blood-2018-99-120356
44. Kipinoinen T., Toppala S., Rinne J.O. et al. Association of Midlife Inflammatory Markers With Cognitive Performance at 10-Year Follow-up. Neurology. 2022;99(20): e2294-e2302. doi: 10.1212/WNL.0000000000201116.
45. Obadia N., Lessa M.A., Daliry A. et al. Cerebral microvascular dysfunction in metabolic syndrome is exacerbated by ischemia-reperfusion injury. BMC Neurosci. 2017;18:67. doi: 10.1186/s12868-017-0384-x.
46. Frisardi V., Solfrizzi V., Seripa D. et al. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res. Rev. 2010;9:399-417. doi: 10.1016/j.arr.2010.04.007.
47. Yates K.F., Sweat V., Yau P.L., Turchiano M.M., Convit A.Impact of metabolic syndrome on cognition and brain: A selected review of the literature. Arterioscler. Thromb. Vasc. Biol. 2012;32:2060-2067. doi: 10.1161/ATVBAHA.112.252759
48. Martin-Jiménez C.A., García-Vega Á., Cabezas R. et al. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol. 2017;158:45-68. doi: 10.1016/j.pneurobio.2017.08.001.
49. Belanger M., Allaman I., Magistretti P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724-738. doi: 10.1016/j.cmet.2011.08.016.
50. Shirolapov I., Zakharov A., Gochhait S. et al. Aquaporin-4 as the Main Element of the Glymphatic System for Clearance of Abnormal Proteins and Prevention of Neurodegeneration: A Review. WSEAS Transactions on Biology and Biomedicine. 2023;20:110-118. doi: 10.37394/23208.2023.20.11.
51. Mestre H., Hablitz L., Xavier A. et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife. 2018;7: e40070. doi: 10.7554/eLife.40070.
52. Escartin C., Galea E., Lakatos A. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312-325. doi: 10.1038/s41593-020-00783-4.
53. Zhang H., Zheng Q., Guo T. et al. Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol Psychiatry. 2022;29(6):1569-1582. doi: 10.1038/s41380-022-01521-x.
54. Santello M., Toni N., Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019;22:154-166. doi: 10.1038/s41593-018-0325-8.
55. Dallérac G., Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol. 2016;144:48-67. doi: 10.1016/j.pneurobio.2016.01.003.
56. Tsybina Y., Kastalskiy I., Krivonosov M. et al. Astrocytes mediate analogous memory in a multi-layer neuron-astrocyte network. Neural Comput Appl. 2022;34:9147-60. doi: 10.1007/s00521-022-06936-9.
57. Marina N., Turovsky E., Christie I.N. et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia. 2018;66:1185-1199. doi: 10.1002/glia.23283.
58. Suzuki A., Stern S.A., Bozdagi O. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810-823. doi: 10.1016/j.cell.2011.02.018.
59. Shen Z., Li Z.Y., Yu M.T., Tan K.L., Chen S. Metabolic perspective of astrocyte dysfunction in Alzheimer’s disease and type 2 diabetes brains. BioMed Pharmacother. 2023;158:114206. doi: 10.1016/j.biopha.2022.114206.
60. Kaur D., Sharma V., Deshmukh R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27:663-677. doi: 10.1007/s10787-019-00580-x.
61. Giovannoni F., Quintana F.J. The role of astrocytes in cns inflammation. Trends Immunol. 2020;41:805-819. doi: 10.1016/j.it.2020.07.007.
62. Hashioka S., Wu Z., Klegeris A. Glia-driven neuroinflammation and systemic inflammation in Alzheimer’s disease. Curr Neuropharmacol. 2021;19:908-924. doi: 10.2174/1570159x18666201111104509.
63. Bloch-Damti A., Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid. Redox Signal. 2005;7:1553-1567. doi: 10.1089/ars.2005.7.1553.
64. Ioannou M.S., Jackson J., Sheu S.H. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell. 2019;177:1522-1535. doi: 10.1016/j.cell.2019.04.001.
65. O’Grady J.P., Dean D.C. 3rd, Yang K.L. et al. Elevated Insulin and Insulin Resistance are Associated with Altered Myelin in Cognitively Unimpaired Middle-Aged Adults. Obesity. 2019;27(9):1464-1471. doi: 10.1002/oby.22558.
66. Ceriello A., Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816-823. doi: 10.1161/01.ATV.0000122852.22604.78.
67. Xu Y., Cao K., Guo B. et al. Lowered levels of nicotinic acetylcholine receptors and elevated apoptosis in the hippocampus of brains from patients with type 2 diabetes mellitus and db/db mice. Aging. 2020;12(14):14205-14218. doi: 10.18632/aging.103435.
68. Martinelli I., Tomassoni D., Roy P., Amenta F., Tayebati S.K. Altered Brain Cholinergic and Synaptic Markers in Obese Zucker Rats. Cells. 2021;10(10):2528. doi: 10.3390/cells10102528.
69. Ortiz-Rodriguez A., Arevalo M.A. The Contribution of Astrocyte Autophagy to Systemic Metabolism.Int J Mol Sci. 2020;21(7):2479. doi: 10.3390/ijms21072479.
70. Zheng H., Zheng Y., Zhao L. et al. Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. Biochim Biophys Acta Mol Basis Dis. 2017;1863(1):266-273. doi: 10.1016/j.bbadis.2016.11.003.
71. Liu X., Zheng H. Leptin-Mediated Sympathoexcitation in Obese Rats: Role for Neuron-Astrocyte Crosstalk in the Arcuate Nucleus. Front Neurosci. 2019;13:1217. doi: 10.3389/fnins.2019.01217.
72. Dalvi P.S., Chalmers J.A., Luo V. et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons.Int J Obes (Lond). 2017;41(1):149-158. doi: 10.1038/ijo.2016.183.
73. Osipova E.D., Semyachkina-Glushkovskaya O.V., Morgun A.V. et al. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci. 2018;29:567-591. doi: 10.1515/revneuro-2017-0092.
74. Popov A., Brazhe A., Denisov P. et al. Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity. Aging Cell. 2021;20: e13334. doi: 10.1111/acel.13334.
75. Mitra S., Banik A., Saurabh S., Maulik M., Khatri S.N. Neuroimmunometabolism: A New Pathological Nexus Underlying Neurodegenerative Disorders. J Neurosci. 2022;42(10):1888-1907. doi: 10.1523/JNEUROSCI.0998-21.2022.
76. Iliff J.J., Wang M., Liao Y. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Science Translational Medicine. 2012;4(147):147ra11. doi: 10.1126/scitranslmed.3003748.
77. Bohr T., Hjorth P.G., Holst S.C. et al. The glymphatic system: Current understanding and modeling. iScience. 2022;25(9):104987. doi: 10.1016/j.isci.2022.104987.
78. Rasmussen M.K., Mestre H., Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurology. 2018;17(11):1016-1024. doi: 10.1016/S1474-4422(18)30318-1.
79. Peng W., Achariyar T.M., Li B. et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 2016;93:215-225. doi: 10.1016/j.nbd.2016.05.015.
80. Shirolapov I.V., Zakharov A.V., Bulgakova S.V. et al. Alzheimer dementia as a consequence of the brain glymphatic system dysfunction. Psychiatry, psychotherapy and clinical psychology. 2023;14(3):291-300. (In Russ.) doi: 10.34883/PI.2023.14.3.004.@@ Широлапов И.В., Захаров И.В., Булгакова С.В. и др. Деменция альцгеймеровского типа как следствие нарушений в глимфатической системе мозга. Психиатрия, психотерапия и клиническая психология. 2023;14(3):291-300. doi: 10.34883/PI.2023.14.3.004.
81. Zhang R., Liu Y., Chen Y. et al. Aquaporin-4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neuroscience and Therapeutics. 2020:26(2):228-239. doi: 10.1111/cns.13194.
82. Ishida K., Yamada K., Nishiyama R. et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. Journal of Experimental Medicine. 2022;219(3): e20211275. doi: 10.1084/jem.20211275.
83. Gouveia-Freitas K., Bastos-Leite A.J. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology. 2021:63(10):1581-1597. doi: 10.1007/s00234-021-02718-7.
84. Shirolapov I.V., Zakharov A.V., Smirnova D.A., Lyamin A.V., Gayduk A.Ya. The Role of the Glymphatic Clearance System in the Mechanisms of the Interactions of the Sleep-Waking Cycle and the Development of Neurodegenerative Processes. Neurosci Behav Physi. 2024;54(2):199-204. doi: 10.1007/s11055-024-01585-y.
85. Jessen N., Munk A., Lundgaard I et al. The glymphatic system - a beginner’s guide. Neurochem Res. 2015;40(12):2583-2599. doi: 10.1007/s11064-015-1581-6.
Рецензия
Для цитирования:
Широлапов И.В., Захаров А.В., Павлова О.Н., Борисова О.В., Булгакова С.В., Курмаев Д.П. Неочевидная близость между метаболическим синдромом, когнитивным дефицитом, астроцитарной дисфункцией и глимфатической активностью мозга: общие закономерности и связи. Экспериментальная и клиническая гастроэнтерология. 2025;(3):44-54. https://doi.org/10.31146/1682-8658-ecg-235-3-44-54
For citation:
Shirolapov I.V., Zakharov A.V., Pavlova O.N., Borisova O.V., Bulgakova S.V., Kurmaev D.P. Unexpected links between metabolic syndrome, cognitive deficit, astrocyte dysfunction and brain glymphatic activity: general patterns and relationships. Experimental and Clinical Gastroenterology. 2025;(3):44-54. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-235-3-44-54



































