Preview

Experimental and Clinical Gastroenterology

Advanced search

Treatment experience enzymbiotic in patients with obesity and dyslipidemia

https://doi.org/10.31146/1682-8658-ecg-220-12-111-119

Abstract

The prevalence of obesity and associated conditions has reached global epidemic proportions. Although nutritional correction and elimination of hypodynamia are considered the leading therapeutic approaches for these pathologies, there are many other factors that may play an important role in their correction. In view of this fact, the search for new safe molecules associated with the restoration of intestinal microbiota, improving metabolic parameters, is an actual problem today. Purpose: to evaluate the effect of enzymbiotic “Biokomplit Enzymbiotic” on lipid metabolism, quantitative and qualitative composition of microbiota and severity of dyspeptic symptoms in patients with obesity of 1-2 degree and dyslipidemia. Materials and methods. The study included 103 patients with obesity of 1-2 degree and dyslipidemia. All patients were divided into 2 groups: the main group - patients with obesity of 1-2 degree and dyslipidemia, receiving “Biocoplit Enzymbiotic” (n=68) and the comparison group - patients with obesity of 1-2 degree and dyslipidemia without treatment (n=35). In addition to general clinical examination and calculation of body mass index, all patients were examined: blood biochemical analysis, examination of intestinal microbiota by polymerase chain reaction (PCR) using a test system “Colonoflor 16”, dyspeptic symptoms were evaluated according to a standardized questionnaire. Results. In the patients of the main group, triglyceride (TG) level was significantly lower, and the concentration of Bacteroides spp. and Akkermansia muciniphila were higher in comparison with the group of patients without treatment: 1.53±0.11 (0.8-2.41) nmol/L vs 2.25±0.25 (0.67-6.2) nmol/L, p<0.05; 2.8*1011 vs 1.1*1011, p=0.02; 7.6*108 vs 1.7*108, p=0.05, respectively. Negative correlations were found between low density lipoproteins (LDL) levels and Bacteroides thetaiotaomicron concentration (rs= -0.342, p=0.023), between body weight and Akkermansia muciniphila concentration (rs= -0.268, p=0.044) and a positive correlation between Akkermansia muciniphila concentration and hight density lipoproteins (HDL) (rs= 0.2, p=0.044). 91% of patients with obesity of 1-2 degree and dyslipidemia experienced dyspeptic symptoms in the form of flatulence and/or fecal shape disturbance. In the main group of patients in 1 month after taking “Biocomplit Enzymbiotic” 65% of patients noted improvement of well-being: 18% of patients had normalized fecal form according to Bristol scale, 31% - decreased severity of flatulence, 16% - decreased appetite. Conclusion. Treatment with enzymbiotic «Biocomplit Enzymbiotic» is associated with an increase in the concentration of Akkermansia muciniphila and Bacteroides spp. in the intestinal microbiota, improvement of the lipid profile and a decrease in the severity of dyspeptic symptoms, decreased appetite in patients with obesity of 1-2 degree and dyslipidemia. Enzymbiotic administration can be considered as a potential therapy element in patients with MS components.

About the Authors

N. V. Khudyakova
Saint-Petersburg University
Russian Federation


Yu. S. Khudiakov
PR «Natural Intelligence»
Russian Federation


A. D. Kotrova
Municipal Polyclinic No. 32
Russian Federation


A. N. Shishkin
Saint-Petersburg University
Russian Federation


S. A. Varzin
Saint-Petersburg University
Russian Federation


A. . Sinitsa
Parusin GmbH
Russian Federation


L. . Rejepova
Saint-Petersburg University
Russian Federation


References

1. Cicero A. F.G., Fogacci F., Bove M., Giovannini M., Borghi C. Impact of a short - term synbiotic supplementation on metabolicsyndrome and systemic inflammation in elderly patients: a randomized placebo-controlled clinical trial. European Journal of Clinical Nutrition. 2021;60(2):655-663. doi: 10.1007/s00394-020-02271-8

2. Solovуova O. I., Simanenkov V. I., Suvorov A. N., Ermolenko E. I., Shumihina I. A., Svirido D. A. The use of probiotics and autoprobiotics in the treatment of irritable bowel syndrome. Experimental and Clinical Gastroenterology. 2017;(7):115-120. (In Russ.)@@ Соловьева О. И., Симаненков В. И., Суворов А. Н., Ермоленко Е. И., Шумихина И. А., Свиридо Д. А. Использование пробиотиков и аутопробиотиков в лечении синдрома раздраженной толстой кишки. Экспериментальная и клиническая гастроэнтерология. 2017;7:115-120.

3. Lapinskii I. V., Serkova M. Yu., Bakulin I. G., Skalinskaya M. I., Avalueva E. B. Metabiotic based on metabolites of Bacillus subtilis for correction of gastrointestinal symptoms in patients with post-COVID syndrome. Medical alphabet. 2022;(35):8-14. (In Russ.) doi: 10.33667/2078-5631-2022-35-8-14.@@ Лапинский И. В., Серкова М. Ю., Бакулин И. Г., Скалинская М. И., Авалуева Е. Б. Возможности использования метабиотика на основе метаболитов Bacillus subtilis для коррекции гастроинтестинальных симптомов у пациентов с постковидным синдромом. Медицинский алфавит. 2022;(35):8-14. doi: 10.33667/2078-5631-2022-35-8-14.

4. Ruiz Sella S. R.B., Bueno T., de Oliveira A. A.B., Karp S. G., Soccol C. R. Bacillus subtilis natto as a potential probiotic in animal nutrition. Critical Reviews in Biotechnology. 2021;41(3):355-369. doi: 10.1080/07388551.2020.1858019.

5. Horie M., Koike T., Sugino S., Umeno A., Yoshida Y. J. Evaluation of probiotic and prebiotic-like effects of Bacillus subtilis BN on growth of lactobacilli. Journal of Applied Microbiology. 2018;64(1):26-33. doi: 10.2323/jgam.2017.03.002

6. Hughes R. L., Alvarado D. A., Swanson K. S., Holscher H. D. The prebiotic potential of inulin-type fructans: a systematic review. Advances in Nutrition. 2022;13(2):492-529. doi: 10.1093/advances/nmab119.

7. Lewis S. J., Heaton K. W. Stool form scale as a useful guide to intestinal transit time. Scandinavian Journal of Gastroenterology. 1997;32(9)920-924. doi: 10.3109/ 00365529709011203.

8. Khudyakova N. V. [Comparative evaluation of the cardiovascular impact of metabolic syndrome components in perimenopausal women: Ph. D. Thesis in Medical Science]. St. Petersburg: St. Petersburg State University. 154 P. (In Russ.)@@ Худякова Н. В. Сравнительная оценка влияния компонентов метаболического синдрома на сердечно-сосудистую систему у женщин в перименопаузе: дис. канд. мед. Наук. СПб: СПбГУ, c. 154.

9. Shishkin A. N., Khudyakova N. V. The experience of Mangiferin in metabolic syndrome. Handbook for General Practitioners. 2019;4:44-51 (In Russ.)@@ Шишкин А. Н., Худякова Н. В. 2019. Опыт применения мангиферина при метаболическом синдроме. Справочник врача общей практики. 2019;4:44-51.

10. Kotrova A. D., Shishkin A. N., Semienova O. I., Slepykh L. A. The role of gut microbiota in the development of metabolic syndrome. Experimental and Clinical Gastroenterology. 2019;172(12):101-108 (In Russ.) doi: 10.31146/1682-8658-ecg-172-12-101-108.@@ Котрова А. Д., Шишкин А. Н., Семенова О. И., Слепых Л. А. Роль кишечной микробиоты в развитии метаболического синдрома. Экспериментальная и клиническая гастроэнтерология. 2019;172(12):101-108. (In Russ.) doi: 10.31146/1682-8658-ecg-172-12-101-108.

11. Oynotkinova O. S., Nikonov E. L., Demidova T. Y. et al. Changes in the intestinal microbiota as a risk factor for dyslipidemia, atherosclerosis and the role of probiotics in their prevention. Therapeutic Archive. 2020;92(9):94-101. (In Russ.) doi: 10.26442/00403660.2020.09.000784.@@ Ойноткинова О. Ш., Никонов Е. Л., Демидова Т. Ю. и др. Изменения кишечной микробиоты как фактор риска развития дислипидемии, атеросклероза и роль пробиотиков в их профилактике. Терапевтический архив. 2020;92(9):94-101. doi: 10.26442/00403660.2020.09.000784.

12. Fuentes M. C., Lajo T., Carrión J. M., Cuñé J. A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol. Mediterranean Journal of Nutrition and Metabolism. 2016;9(2):125-35. doi: 10.3233/MNM-160065.

13. Mukerji P., Roper J. M., Stahl B. et al. Safety evaluation of AB-LIFE(®) (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food and Chemical Toxicology. 2016;92:117-28. doi: 10.1016/j.fct.2016.0.

14. Borovkova E. A., Alieva E. V., Frolova T. V. Biological properties and probiotic potential of intestinal lactobacilli. Acta Biomedica Scientifica. 2019;4(1):124-132. (In Russ.) doi: 10.29413/ABS.2019-4.1.19.@@ Боровкова Е. А., Алиева Е. В., Фролова Т. В. Изучение биологических свойств и пробиотического потенциала кишечных лактобацилл. Acta Biomedica Scientifica. 2019;4(1):124-132. doi: 10.29413/ABS.2019-4.1.19.

15. Chen G., Chen D., Zhou W., Peng Y., Chen C., Shen W., Zeng X., Yuan, Q. Improvement of metabolic syndrome in high-fat diet-induced mice by yeast β-glucan is linked to inhibited proliferation of Lactobacillus and Lactococcus in gut microbiota. Journal of Agricultural and Food Chemistry. 2021;69(27):7581-92. doi: 10.1021/acs.jafc.1c00866.

16. Yu D., Shu X. O., Howard E. F., Long J., English W. J., Flynn C. R. Fecal metagenomics and metabolomics reveal gut microbial changes after bariatric surgery. Surgery for Obesity and Related Diseases. 2020;16(11):1772-82. doi: 10.1016/j.soard.2020.06.032.

17. Pircalabioru G. G., Ilie I., Oprea L., Picu A., Petcu L. M., Burlibasa L., Chifiriuc M. C., Musat M. Microbiome, mycobiome and related metabolites alterations in patients with metabolic syndrome - a pilot study. Metabolites. 2022;12(3):218. doi: 10.3390/metabo12030218.

18. Zakharova I. N., Berezhnaya I. V., Dubovets N. F., Skorobogatova E. V., Dubovets E. A., Dubovets A. A. Mysterious Akkermansia muciniphila. What do we know about it? Pediatrics. Consilium Medicum. 2023;1:74-80 (In Russ.) doi: 10.26442/26586630.2023.1.202190.@@ Захарова И. Н., Бережная И. В., Дубовец Н. Ф., Скоробогатова Е. В., Дубовец Е. А., Дубовец А. А. Загадочная Akkermansia muciniphila. Что мы знаем о ней сегодня? Педиатрия. Consilium Medicum. 2023;1:74-80. doi: 10.26442/26586630.2023.1.202190.

19. Plovier H., Everard A., Druart C., et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine. 2017;23(1):107-13. doi: 10.1038/nm.4236.

20. Depommier C., Everard A., Druart C., et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine. 2019;25(7):1096-103. doi: 10.1038/s41591-019-0495-2.

21. Everard A., Belzer C., Geurts L., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences. 2013;28;110(22):9066-71. doi: 10.1073/pnas.1219451110.

22. Depommier C., Van Hul M., Everarda A., et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes. 2020;11(5):1231-45. doi: 10.1080/19490976.2020.1737307.

23. Yoshida N., Yamashita T., Osone T. et al. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience. 2021;24(11):103342. doi: 10.1016/j.isci.2021.103342.

24. Townsend 2nd G.E., Han W., Schwalm 3rd N.D., et al. A master regulator of bacteroides thetaiotaomicron gut colonization controls carbohydrate utilization and an alternative protein synthesis factor. mBio. 2020;11(1): e03221-19. doi: 10.1128/mBio.03221-19.


Review

For citations:


Khudyakova N.V., Khudiakov Yu.S., Kotrova A.D., Shishkin A.N., Varzin S.A., Sinitsa A., Rejepova L. Treatment experience enzymbiotic in patients with obesity and dyslipidemia. Experimental and Clinical Gastroenterology. 2023;(12):111-119. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-220-12-111-119

Views: 179


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)