Preview

Experimental and Clinical Gastroenterology

Advanced search

The effectiveness of autoprobiotics in the correction of lipid metabolism

https://doi.org/10.31146/1682-8658-ecg-220-12-97-102

Abstract

Objective: evaluation of the effectiveness of an autoprobiotic based on indigenous enterococci in the correction of lipid metabolism disorders. Materials and Methods: 17 patients with metabolic syndrome and dyslipidemia were under observation. All patients signed an informed consent prior to the start of the study procedures. An autoprobiotic (AP) based on indigenous enterococci was prescribed as a personalized functional food product (PFPP). AP was prescribed 50 ml 2 times a day for 20 days, 2 courses were used with an interval of 1 month. The effectiveness of AP was assessed by changes in lipid metabolism at two time points: V1 (before the start of treatment), V2 (2 weeks after the end of the second course of autoprobiotic therapy). Lipid profile indicators: total cholesterol (CL), low-density lipoproteins (LDL), high-density lipoproteins (HDL), triglycerides (TG) were evaluated in fasting blood serum in dynamics before treatment and two weeks after the end of the second course of autoprobiotics. At the same time points, the level of C-reactive protein (CRP) was additionally assessed as a marker of chronic low-level inflammation, which can aggravate lipid profile disorders in patients with metabolic syndrome. Statistical processing was carried out using the SPSS8.0 computer software package. Results: After taking the autoprobiotic, a statistically significant improvement was revealed in most of the analyzed parameters of lipid metabolism, as well as a decrease in the level of C-reactive protein. (p<0.05). Conclusions: autoprobiotics can be a promising method of correcting disorders not only of the intestinal microbiota, but also changes in lipid metabolism. It seems relevant to use a combination of autoprobiotics with statins, because this will provide an impact on different pathogenetic pathways of dyslipidemia. However, further research is needed to gain a deeper understanding of the underlying mechanisms of the identified effect.

About the Authors

N. V. Baryshnikova
Institute of Experimental Medicine; Pavlov First St. Petersburg State Medical University
Russian Federation


L. S. Alferova
Institute of Experimental Medicine
Russian Federation


E. A. Demchenko
Institute of Experimental Medicine
Russian Federation


N. S. Lavrenova
Institute of Experimental Medicine
Russian Federation


A. N. Tsapieva
Institute of Experimental Medicine
Russian Federation


A. N. Suvorov
Institute of Experimental Medicine
Russian Federation


E. I. Ermolenko
Institute of Experimental Medicine
Russian Federation


References

1. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019, 20(4):461-472. doi: 10.1007/s11154-019-09512-0.

2. Sun C, Wang Z, Hu L, Zhang X, Chen J, Yu Z, Liu L, Wu M. Targets of statins intervention in LDL-C metabolism: Gut microbiota. Front Cardiovasc Med. 2022;9:972603. doi: 10.3389/fcvm.2022.972603.

3. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020, 72:558-77. doi: 10.1016/j.jhep.2019.10.003.

4. Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017, 8:130-42. doi: 10.1080/ 19490976.2016.1270811l.

5. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016, 535:56-64. doi: 10.1038/nature 18846.

6. Rebolledo C, Cuevas A, Zambrano T, Acuña JJ, Jorquera MA, Saavedra K, Martínez C, Lanas F, Serón P, Salazar LA, Saavedra N. Bacterial Community Profile of the Gut Microbiota Differs between Hypercholesterolemic Subjects and Controls. Biomed Res Int. 2017;2017:8127814. doi: 10.1155/2017/8127814.

7. Alferova L.S., Ermolenko E. I., Chernikova A. T. et al. Autoprobiotic enterococci as a component of metabolic syndrome complex therapy.Russian Journal for Personalized Medicine. 2022;2(6):98-114. (In Russ.) doi: 10.18705/2782-3806-2022-2-6-98-114.

8. Liu Y., Song X., Zhou H. et al. Gut Microbiome Associates With Lipid-Lowering Effect of Rosuvastatin in Vivo. Front Microbiol. 2018 Mar 22;9:530. doi: 10.3389/fmicb.2018.00530.

9. Drapkina O.M., Shirobokikh O. E. Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome. Rational Pharmacotherapy in Cardiology. 2018;14(4):567-574. (In Russ). doi: 10.20996/1819-6446-2018-14-4-567-574.

10. Kimura I., Ozawa K., Inoue D. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi: 10.1038/ncomms2852.

11. Kumar P.S., Mason M. R., Brooker M. R., O’Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 2012;39(5):425-33. doi: 10.1111/j.1600-051X.2012.01856.x.

12. Lefebvre P., Cariou B., Lien F., Kuipers F., Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147-91. doi: 10.1152/physrev.00010.2008.

13. Schoeler M., Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461-472. doi: 10.1007/s11154-019-09512-0.

14. Zhu Y., Li Q., Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128(5):353-366. doi: 10.1111/apm.13038

15. Bennett B.J., de Aguiar Vallim T. Q., Wang Z. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49-60. doi: 10.1016/j.cmet.2012.12.011.

16. He X., Zheng N., He J., Liu C., Feng J., Jia W., Li H. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice. J Proteome Res. 2017;16(5):1900-1910. doi: 10.1021/acs.jproteome.6b00984.

17. Yoo D.H., Kim I. S., Van Le T. K., Jung I. H., Yoo H. H., Kim D. H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos. 2014;42(9):1508-13. doi: 10.1124/dmd.114.058354.

18. Samsonova N.G., Zvenigorodskaia L. A., Cherkashova E. A., Lazebnik L. B. [Intestinal dysbiosis and atherogenic dyslipidemia]. Eksp Klin Gastroenterol. 2010;(3):88-94.Russian. PMID: 20499450

19. Adak A., Khan M. R. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019, 76:473-93. doi: 10.1007/s00018-018-2943-4.

20. Bogiatzi C., Gloor G., Allen-Vercoe E. et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis. 2018;273:91-97. doi: 10.1016/j.atherosclerosis.2018.04.015.

21. Nagpal R., Behare P. V., Kumar M. et al. Milk, milk products, and disease free health: an updated overview. Crit Rev Food Sci Nutr. 2012;52(4):321-33. doi: 10.1080/10408398.2010.500231.

22. Falcinelli S., Rodiles A., Hatef A., Picchietti S., Cossignani L., Merrifield D. L., Unniappan S., Carnevali O. Influence of Probiotics Administration on Gut Microbiota Core: A Review on the Effects on Appetite Control, Glucose, and Lipid Metabolism. J Clin Gastroenterol. 2018;52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S50-S56. doi: 10.1097/MCG.0000000000001064.

23. Mu J., Guo X., Zhou Y., Cao G. The Effects of Probiotics/Synbiotics on Glucose and Lipid Metabolism in Women with Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2023;15(6):1375. doi: 10.3390/nu15061375.

24. Kumar M., Nagpal R., Kumar R., Hemalatha R., Verma V., Kumar A., Chakraborty C., Singh B., Marotta F., Jain S., Yadav H. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res. 2012;2012:902917. doi: 10.1155/2012/902917.

25. Suvorov A., Karaseva A., Kotyleva M. et al. Autoprobiotics as an approach for restoration of personalised microbiota. Front. Microbiol. 2018; 9:1869. doi: 10.3389/fmicb.2018.01869.

26. Ermolenko E.I., Molostova A. S., Baryshnikova N. V., Svarval A. V., Gladyshev N. S., Kashchenko V. A., Suvorov A. N. The clinical effectiveness of probiotics and autoprobiotics in treatment of Helicobacter pylori-associated dyspepsia.Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2022;12(4):726-734. doi: 10.15789/2220-7619-TCE-1927.

27. Ermolenko E.I., Abdurasulova I. N., Kotyleva M. P., Svirido D. A., Matsulevich A. V., Karaseva A. B. Effects of Indigenous enterococci on the Intestinal Microbiota and the Behavior of Rats. Neuroscience and Behavioral Physiology, 2018, 48(4):496-505. DOI: 10.1007/s11055-018-0591

28. Simanenkov V.I., Suvorov A. N., Solovyova O. I. A method for obtaining a personalized autoprobiotic product and a method for treating irritable bowel syndrome using this product. RF Patent for invention No. 2546253/ 02.03.2015. Byul. No. 10. Available at: http://www.findpatent.ru/patent/254/2546253.html (accessed on 30 June 2023).


Review

For citations:


Baryshnikova N.V., Alferova L.S., Demchenko E.A., Lavrenova N.S., Tsapieva A.N., Suvorov A.N., Ermolenko E.I. The effectiveness of autoprobiotics in the correction of lipid metabolism. Experimental and Clinical Gastroenterology. 2023;(12):97-102. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-220-12-97-102

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)