Preview

Experimental and Clinical Gastroenterology

Advanced search

Chemomicrobiome study of preobiotic and antibiotic properties of bioflavonoids and polyphenols, promising for the treatment of COVID-19 and other viral infections

https://doi.org/10.31146/1682-8658-ecg-220-12-68-76

Abstract

When studying molecules of promising drugs for COVID-19 therapy, it is important to evaluate their prebiotic and antibiotic properties, i. e. impact on the growth of beneficial and pathogenic microbiota. In the present study, the results of chemomicrobiome analysis of 5 bioflavonoids (hesperidin, leukodelphinidin, rutin, quercetin, baicalin), 2 polyphenols (curcumin, epigallocatechin gallate) and their synergistic substances (glycyrrhizin saponin and piperine alkaloid) were obtained for 38 human commensal bacteria and 152 strains. pathogenic microorganisms. The studied molecules significantly supported the growth of beneficial microbiota: for each of the molecules, the AUC values were 0.67..0.79 c. u. (average for a sample of 38 commensals) and had good safety ratings. The greatest contribution to the support of beneficial microbiota was made by rutin and glycyrrhizin (AUC 0.78±0.14 a. u.), the smallest contribution was made by baicalin (AUC 0.66±0.24 a. u.). A synergistic interaction between the studied substances was established: with the combined use of 9 substances, the average AUC value can increase up to 0.84±0.06 c. u. Normobiota most actively processes glycyrrhizin (19.2±12.1%), the least actively - piperine (6.0±5.9%). The most active metabolizers of the studied substances were bacteria of the genus Bacteroides (more than 30%), the least active were bacteria of the genus Collinsella (<1%). The results of chemomicrobiome analysis of the studied molecules in volunteers with different microbiome profiles confirmed that the studied substances do not contribute to the growth of pathogenic flora. The studied substances can inhibit the growth of pathogenic Acinetobacter baumannii, Candida albicans, Candida glabrata, Cryptococcus neoformans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphlococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes (MIC values of about 10-25 µg/ml).

About the Authors

O. A. Gromova
FRC “Computer Science and Control” RAS
Russian Federation


I. Yu. Torshin
FRC “Computer Science and Control” RAS
Russian Federation


A. G. Chuchalin
FGAOU HE Russian National Research Medical University named after N.N. N. I. Pirogov» of the Ministry of Health of Russia
Russian Federation


References

1. Torshin I. Yu., Gromova O. A. Micronutrients against coronaviruses. (edd. A. G. Chuchalin) Yesterday Today Tomorrow. Moscow. GEOTAR-Media. 2023. 448 p. (in Russ.) ISBN 978-5-9704-7786-1.@@ Торшин И. Ю., Громова О. А. (ред. Чучалин А. Г.). Микронутриенты против коронавирусов. Вчера, сегодня, завтра. ГЭОТАР-Медиа, 2023, 448 с., ISBN 978-5-9704-7786-1.

2. Gromova O.A., Torshin I. Yu., Chuchalin A. G. Systematic computer analysis of the pharmacology of bioflavonoids in the context of increasing the body’s antiviral defenses. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023; 16 (1): 90-109. (in Russ.) doi: 10.17749/2070-4909/farmakoekonomika.2023.162.90.109@@ Громова О. А., Торшин И. Ю., Чучалин А. Г. Систематический компьютерный анализ фармакологии биофлавоноидов в контексте повышения противовирусной защиты организма. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023; 16 (1): 90-109. doi: 10.17749/2070-4909/farmakoekonomika.2023.162.90.109.

3. Torshin I. Yu., Gromova O. A., Zakcharova I. N., Maximov V. A. Hemomikrobiomny lactitol analysis. Experimental and Clinical Gastroenterology. 2019;(4):111-121. (In Russ.) doi: 10.31146/1682-8658-ecg-164-4-111-121.@@ Торшин И. Ю., Громова О. А., Захарова И. Н., Максимов В. А. Хемомикробиомный анализ Лактитола. Экспериментальная и клиническая гастроэнтерология. 2019;164(4):111-121. doi: 10.31146/1682-8658-ecg-164-4-111-121.

4. Torshin I. Yu., Galustyan A. N., Ivanova M. I., Khadzhidis A. K., Gromova O. A. Chemomicrobiome Analysis of Synergism of D-mannose and D-fructose in Comparison with Other Metabiotics. Effective pharmacotherapy. 2020;16(4):8-18. (in Russ.) doi: 10.33978/2307-3586-2020-16-8-18.@@ Торшин И. Ю., Галустян А. Н., Иванова М. И., Хаджидис А. К., Громова О. А. Хемомикробиомный анализ синергизма D-маннозы и D-фруктозы в сравнении с другими метабиотиками. Эффективная фармакотерапия. 2020;16(4):8-18. doi: 10.33978/2307-3586-2020-16-8-18.

5. Gromova O. A., Torshin I. Yu., Naumov A. V., Maksimov V. A. Chemomicrobiomic analysis of glucosamine sulfate, prebiotics and non-steroidal anti-inflammatory drugs. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(3):270-282. (In Russ.) doi: 10.17749/2070-4909/farmakoekonomika.2020.049.@@ Громова О. А., Торшин И. Ю., Наумов А. В., Максимов В. А. Хемомикробиомный анализ глюкозамина сульфата, пребиотиков и нестероидных противовоспалительных препаратов. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(3):270-282. doi: 10.17749/2070-4909/farmakoekonomika.2020.049.

6. Torshin I. Yu., Rudakov K. V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognit. Image Anal. 2016;26(3):483-496.

7. Torshin I. Y. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2013;23(2):319-327.

8. Torshin I. Yu, Rudakov K. V. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015;25(4):577-587.

9. Torshin I. Y. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). 2011;21(4):652-662.

10. Torshin I. Yu, Rudakov K. V. On the procedures of generation of numerical features over the splits of a set of objects and the problem of prediction of numeric target variables. Pattern Recognition and Image Analysis. 2019;29(2):65-75.

11. Maier L., Pruteanu M., Kuhn M. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018 Mar 29;555(7698):623-628. doi: 10.1038/nature25979.

12. A framework for human microbiome research. Nature. 2012 Jun 13;486(7402):215-21. doi: 10.1038/nature11209.

13. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014 Sep 10;16(3):276-89. doi: 10.1016/j.chom.2014.08.014.

14. Kim S., Chen J., Cheng T. et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019 Jan 8;47(D1): D1102-D1109. doi: 10.1093/nar/gky1033.

15. Gromova O. A., Torshin I. Yu., Maksimov V. A. Chemomicrobiome analysis of the ornithine molecule. Experimental and Clinical Gastroenterology. 2021;194(10):131-136. (In Russ.) doi: 10.31146/1682-8658-ecg-194-10-131-136.@@ Громова О. А., Торшин И. Ю., Максимов В. А. Хемомикробиомный анализ молекулы орнитина. Экспериментальная и клиническая гастроэнтерология. 2021;194(10): 131-136. doi: 10.31146/1682-8658-ecg-194-10-131-136.

16. Barkham TM. Laboratory safety aspects of SARS at Biosafety Level 2. Ann Acad Med Singapore. 2004 Mar;33(2):252-6. PMID: 15098644


Review

For citations:


Gromova O.A., Torshin I.Yu., Chuchalin A.G. Chemomicrobiome study of preobiotic and antibiotic properties of bioflavonoids and polyphenols, promising for the treatment of COVID-19 and other viral infections. Experimental and Clinical Gastroenterology. 2023;(12):68-76. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-220-12-68-76

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)