Preview

Experimental and Clinical Gastroenterology

Advanced search

Comparative value of controlled attenuation (CAPc) and continuous controlled attenuation (CAP) parameters for different stages of non-alcoholic fatty liver disease

https://doi.org/10.31146/1682-8658-ecg-222-2-55-63

Abstract

Objective: To compare the efficacy of continuous controlled attenuation parameter (CAPc) compatible with vibration-controlled transient elastography (VCTE) versus standard controlled attenuation parameter (CAP) in a population of patients with non-alcoholic fatty liver disease (NAFLD). Materials and methods: A retrospective analysis of the database of patients (n = 582), divided into two groups: NAFLD group (n = 342) and control group (n = 240), was performed. The database was formed in the period from 2021 to 2023. The assessment of VCTE with CAP was carried out using two elastographs (FibroScan 530® and FibroScan 630 Expert®). The indicators of biochemical blood test, lipid and carbohydrate metabolism were evaluated. Statistical calculations were performed using STATISTICA13.0 (StatSoftInc., USA). Results: When comparing CAP with CAPc, statistical differences between CAP (264.7 ± 61.2) and CAPc (260.1 ± 57.4) (P < 0.0001), IQRCAP (36.4 ± 21.7) and IQR CAPc (13 ± 7.8) (P<0.0001) were found. When considering the stages of liver steatosis, no differences were found (p=0.32). A high degree of correlation was found between CAP and CAPc (R2=0,87). The analysis showed high sensitivity and specificity of CAPc compared to CAP for S0 (85.2% and 88.5%) and S3 (81.2% and 91.2%) stages vs S1 (41.4% and 91.0%) and S2 (25.0% and 93.7%) stages. When analyzing mismatches, it was shown that the main share of mismatches falls within the interval between two adjacent stages (one for S0 and one for S3): S0: 10.7%, S1: 42.8%, S26 62.5% and S3: 10.0%. Conclusion: Since IQR CAPc is 3 times less than IQR CAP, CAPc has high diagnostic efficiency. On the other hand, CAPc and CAP scores are highly correlated, and the stages of liver steatosis calculated with CAPc and CAP are not statistically different, which indicates the equivalence of the results of two elastographs.

About the Authors

A. A. Goncharov
Federal Research Center for Nutrition, Biotechnology and Food Safety
Russian Federation


A. N. Sasunova
Federal Research Center for Nutrition, Biotechnology and Food Safety
Russian Federation


V. A. Isakov
Federal Research Center for Nutrition, Biotechnology and Food Safety
Russian Federation


References

1. Zoonosis Z. M., Golabi P., Paik J. M., Henry A., Van Dongen C., Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-1347. doi: 10.1097/HEP.0000000000000004.

2. Younossi Z. M., Koenig A. B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. doi: 10.1002/hep.28431.

3. Le M. H., Yeo Y. H., Li X. et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis [published online ahead of print, 2021 Dec 7]. ClinGastroenterolHepatol. 2021; S1542-3565(21)01280-5. doi: 10.1016/j.cgh.2021.12.002.

4. Mitra S., De A., Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. TranslGastroenterolHepatol. 2020;5:16. Published 2020 Apr 5. doi: 10.21037/tgh.2019.09.08.

5. Ciardullo S., Grassi G., Mancia G., Perseghin G. Nonalcoholic fatty liver disease and risk of incident hypertension: a systematic review and meta-analysis. Eur J GastroenterolHepatol. 2022;34(4):365-371. doi: 10.1097/MEG.0000000000002299.

6. Alon L., Corica B., Raparelli V. et al. Risk of cardiovascular events in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J PrevCardiol. 2022;29(6):938-946. doi: 10.1093/eurjpc/zwab212.

7. Mantovani A., Petracca G., Beatrice G. et al. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: a meta-analysis of observational cohort studies. Gut. 2022;71(4):778-788. doi: 10.1136/gutjnl-2021-324191.

8. Lazebnik L. B., Golovanova E. V., Turkina S. V. et al. Non-alcoholic fatty liver disease in adults: clinic, diagnostics, treatment. Guidelines for therapists, third version. Experimental and Clinical Gastroenterology. 2021;1(1):4-52.(In Russ.) doi: 10.31146/1682-8658-ecg-185-1-4-52.@@ Лазебник Л. Б., Голованова Е. В., Туркина С. В. И соавт. Неалкогольная жировая болезнь печени у взрос лых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия. Экспериментальная и клиническая гастроэнтерология. 2021;185(1): 4-52. doi: 10.31146/1682-8658-ecg-185-1-4-52.

9. Ivashkin V. T., Mayevskaya M. V., Pavlov Ch.S., FedosyinaYe.A., BessonovaYe.N., Pirogova I.Yu., Garbuzenko D. V. Treatment of liver cirrhosis complications: Clinical guidelines of the Russian Scientific Liver Society and Russian gastroenterological association. Ross z gastroenterolgepatolkoloproktol. 2016;26(4):71-102. doi: 10.22416/1382-4376-2016-26-4-71-102.@@ Ивашкин В. Т., Маевская М. В., Павлов Ч. С., Федосьина Е. А., Бессонова Е. Н., Пирогова И. Ю., Гарбузенко Д. В. Клинические рекомендации Российского общества по изучению печени и Российской гастроэнтерологической ассоциации по лечению осложнений цирроза печени. Российскийжурналгастроэнтерологии, гепатологии, колопроктологии. 2016;26(4):71-102. doi: 10.22416/1382-4376-2016-26-4-71-102.

10. Clinical guidelines from 2021 “Chronic viral hepatitis C”. Available at: https://medi.ru/klinicheskie-rekomendatsii/khronicheskij-virusnyj-gepatit-s-khvgs-u-vzroslykh_14028/Accessed: 05/17/2023.@@ Клинические рекомендации от 2021 г. «Хронический вирусный гепатит С». ссылка активна на 17.05.2023. https://medi.ru/klinicheskie-rekomendatsii/khronicheskij-virusnyj-gepatit-s-khvgs-u-vzroslykh_14028/

11. Oeda S., Tanaka K., Oshima A., Matsumoto Y., Sueoka E., Takahashi H. Diagnostic Accuracy of FibroScan and Factors Affecting Measurements. Diagnostics (Basel). 2020;10(11):940. Published 2020 Nov 12. doi: 10.3390/diagnostics10110940.

12. Sasso M., Beaugrand M., de Ledinghen V. et al. Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol. 2010;36(11):1825-1835. doi: 10.1016/j.ultrasmedbio.2010.07.005.

13. Selvaraj E. A., Mózes F. E., Jayaswal A. N.A. et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J Hepatol. 2021;75(4):770-785. doi: 10.1016/j.jhep.2021.04.044.

14. Pu K., Wang Y., Bai S. et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterol. 2019;19(1):51. Published 2019 Apr 8. doi: 10.1186/s12876-019-0961-9.

15. Jiang W., Huang S., Teng H. et al. Diagnostic accuracy of point shear wave elastography and transient elastography for staging hepatic fibrosis in patients with non-alcoholic fatty liver disease: a meta-analysis. BMJ Open. 2018;8(8): e021787. Published 2018 Aug 23. doi: 10.1136/bmjopen-2018-021787.

16. Zhang X., Wong G. L., Wong V. W. Application of transient elastography in nonalcoholic fatty liver disease. ClinMolHepatol. 2020;26(2):128-141. doi: 10.3350/cmh.2019.0001n.

17. Tsochatzis E. A., Gurusamy K. S., Ntaoula S., Cholongitas E., Davidson B. R., Burroughs A. K. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol. 2011;54(4):650-659. doi: 10.1016/j.jhep.2010.07.033.

18. Karlas T., Petroff D., Sasso M. et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022-1030. doi: 10.1016/j.jhep.2016.12.022.

19. Castéra L., Vergniol J., Foucher J. et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology. 2005;128(2):343-350. doi: 10.1053/j.gastro.2004.11.018.

20. Hartl J., Denzer U., Ehlken H. et al. Transient elastography in autoimmune hepatitis: Timing determines the impact of inflammation and fibrosis. J Hepatol. 2016;65(4):769-775. doi: 10.1016/j.jhep.2016.05.023.

21. Corpechot C., Carrat F., Poujol-Robert A. et al. Noninvasive elastography-based assessment of liver fibrosis progression and prognosis in primary biliary cirrhosis. Hepatology. 2012;56(1):198-208. doi: 10.1002/hep.25599.

22. Nogami A., Iwaki M., Kobayashi T. et al. Real-world assessment of SmartExam, a novel FibroScan computational method: A retrospective single-center cohort study. J GastroenterolHepatol. 2023;38(2):321-329. doi: 10.1111/jgh.16076.

23. Chan W. K., Nik Mustapha N. R., Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J GastroenterolHepatol. 2014;29(7):1470-1476. doi: 10.1111/jgh.12557.


Review

For citations:


Goncharov A.A., Sasunova A.N., Isakov V.A. Comparative value of controlled attenuation (CAPc) and continuous controlled attenuation (CAP) parameters for different stages of non-alcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2024;(2):55-63. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-222-2-55-63

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)