Intestinal microbiota and cardiovascular diseases
https://doi.org/10.31146/1682-8658-ecg-199-3-125-133
Abstract
The article presents a review of publications in in Russian and foreign literature devoted to modern views on the role of intestinal microbial metabolites as risk factors for cardiovascular diseases. The technical capabilities of the last decade made it possible to accurately characterize the intestinal microbiota, which contributed to a deeper understanding of the processes occurring during the development of a number of diseases and to establish that the outcome of their treatment is aff ected by pronounced changes in the composition, diversity and metabolic activity of the human intestinal microbiota. A number of questions on the interaction of the intestinal microbiota and the host organism remain open. Further research on the relationship of the intestinal microbiota, its metabolic products with risk factors for cardiovascular diseases opens up unique opportunities in the treatment and prevention of diseases of the cardiovascular system using manipulative technologies with the composition of the microbiota and its function.
About the Authors
Z. V. NesterenkoRussian Federation
Zoia V. Nesterenko - MD, PhD, DSc (Medicine), Professor of the Department of Propediatrics Сhildhood Diseases with a Course of care for Patients General Care.
2, Litovskaya st. St. Petersburg 194100
A. I. Khavkin
Russian Federation
Anatoly I. Khavkin - MD, PhD, DSc (Medicine), Professor, Head of the Moscow Regional Center for Pediatric Gastroenterology, Hepatology and Abdominal Surgery.
62, Bolshaya Serpuhovskaya street, Moscow 115093
V. P. Novikova
Russian Federation
Valeriya P. Novikova - MD, PhD, DSc (Medicine), Professor, Head of Department of Propedeutics of Childhood Diseases with a course of General Child Care, Head of the Laboratory “Medical and social problems in pediatrics”.
2, Litovskaya st. St. Petersburg 194100
A. P. Listopadova
Russian Federation
Anastasia P. Listopadova - MD, PhD, MS (Medicine), Senior researcher of the Department of Propediatrics Сhildhood Diseases with a Course of care for Patients General Care.
2, Litovskaya st. St. Petersburg 194100
References
1. Bel’mer S.V., Havkin A. I., Aleshina E. O., et al. [Intestinal microbiota in children: norm, disorders, correction]. Moscow. Medpraktika Publ., 2020, 472 P. (in Russ.)
2. Karpeeva YU.S., Novikova V. P., Havkin A. I. [Microbiota and human diseases]. Voprosy dietologii = Questions of dietology. 2020; 10(4):45–53. (in Russ.) doi: 10.20953/2224–5448–2020–4–45–53
3. Baryshnikova N.V., Gurova M. M., Ivanova I. I., et al. [Gastrointestinal microbiota in chronic gastritis]. St- Peterburg, 2014. (in Russian).
4. Belyaeva I. A., Bombardirova E. P., Mitish M. D., Potekhina T. V., Kharitonova N. A. Ontogenesis and Dysontogenesis of the Gut Microbiota in Young Children: a Trigger Mechanism of Child Health Disorders. Current Pediatrics. 2017;16(1):29–38. (In Russ.) doi:10.15690/vsp.v16i1.1692
5. Shapovalova N.S., Novikova V. P. [Th e gut-brain axis and its role in the development of functional gastrointestinal disorders]. Children’s medicine of the North- West. 2021;9(4):33–51. (in Russian). ID: 47578965.
6. Agostino Di Ciaula, Piero Portincasa et al. Liver Steatosis, Gut-L iver Axis, Microbiome and Environmental Factors. ANever-E nding Bidirectional Cross-T alk J. Clin. Med. 2020, 9(8), 2648.
7. Wu L., Li J., Feng J., Ji J., Yu Q., Li Y., Zheng Y., Dai W., Wu J., Guo C. Crosstalk between PPARs and gut microbiota in NAFLD. Biomed Pharmacother. 2021 Apr;136:111255. doi: 10.1016/j.biopha.2021.111255
8. Alshehri D., Saadah O., Mosli M., Edris S., Alhindi R., Bahieldin A. Dysbiosis of gut microbiota in infl ammatory bowel disease: Current therapies and potential for microbiota-m odulating therapeutic approaches. Bosn J Basic Med Sci. 2021 Jun 1;21(3):270–283. doi: 10.17305/bjbms.2020.5016
9. Gurova M.M., Novikova V. P., Khavkin A. I. Th e state of gut microbiota and clinical- metabolic features in children with overweight and obesity. Russian Journal of Evidence-B ased Gastroenterology. 2018;7(3):4–10. (in Russ.) doi: 10.17116/dokgastro201870314
10. Vorontsov P.V., Gurova M. M., Novikova V. P., Procopeva N. E. Рroatherogenic composition of intestinal microbiota in overweight and obese children. Obesity Facts. 2019;12(S1):193. ID: 38193081
11. Novikova V.P., Baryshnikova N. V. Gastrointesti nal microbiota and obesity in children. In the book: Multidisciplinary Problems of Obesity in Children. St- Peterburg, 2018. pp. 83–93. ID: 36924774 (in Russ.)
12. Novikova V.P., Gurova M. M., Havkin A. I. Gut microbiota and obesity. In the book: Gut microbiota in children: norm, disturbances, correction. Moscow, 2019. pp. 336–347. (in Russ.)
13. Novikova V.P., Listopadova A. P., Kosenkova T. V., Pavlova S. E., Demchenkova O. A. Gut microbiota in children with asthma. Preventive and Clinical Medicine. 2017;4 (65): 30–34. (in Russ.)
14. Gurova М.М., Novikova V. P. Evolutional aspects of neonatal gastroenterology (part часть 2): formation of the gut microbiome and the signifi cance of the nutritional factor in the fi rst months of life. Vopr. det. dietol. (Pediatric Nutrition). 2018; 16(1): 34–41. (In Russian). doi: 10.20953/1727-5784–2018–1–34–41
15. Kosenkova T.V., Novikova V. P., Lavrova O. V., Boitsova E. A. Vaginal microbiota as an epigenetic factor of early debut of allergic diseases in children born from mothers with bronchial asthma. В сборнике: Scientifi c research of the SCO countries: synergy and integration. Materials of the International Conference. 2019. pp. 58–65. ID: 38226616
16. Khavkin A.I., Kosenkova T. V., Bojcova E. A., Novikova V. P., Bogdanova N. M. [Gut microbiota as an epigenetic factor in the formation of food allergy. In the book: Gut microbiota in children: norm, disturbances, correction]. Moscow, 2020. pp. 324–337. (in Russ.)
17. Yu D., Meng X., de Vos W. M., Wu H., Fang X., Maiti A. K. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci. 2021 Nov 23;22(23):12661. doi: 10.3390/ijms222312661
18. Cho I., Blaser M. J.. Th e human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260– 270. Published 2012 Mar 13. doi:10.1038/nrg3182
19. Fujimura K.E., Sitarik A. R., Havstad S., et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell diff erentiation. Nat Med. 2016;22(10):1187-1191. doi: 10.1038/nm.4176.
20. Donia M. S., Fischbach M. A. Small molecules from the human microbiota science. Science. 2015; 349 (6246): 1254766. doi: 10.1126/science.1254766
21. Biedermann L., Rogler G. Th e intestinal microbiota: its role in health and disease. Eur. J. Pediatr. 2015; 174 (2): 151–167. doi: 10.1007/s00431–014–2476–2. PMID: 25563215.
22. Fujimura K.E., Sitarik A. R., Havstad S., et al. Neonatal gut microbiota associates with childhood multi sensitized atopy and T cell diff erentiation. Nat Med. 2016;22(10):1187-1191. doi: 10.1038/nm.4176.
23. O’Neill C.A., Monteleone G., McLaughlin J.T., Paus R. Th e gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays. 2016; 38: 1167-1176. 10.1002/bies.201600008
24. Novikova V.P., Havkin A. I., Gorelov A. V., Polunina A. V. Th e lung-gut axis and COVID infection. Infekcionnye bolezni= infectious diseases. 2021;19(1):91–96. (in Russ.) doi: 10.20953/1729–9225–2021–1–91–96
25. Generoso J.S., Giridharan V. V., Lee J., Macedo D., Barichello T. Th e role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz J Psychiatry. 2021 May- Jun;43(3):293–305. doi: 10.1590/1516–4446–2020–0987
26. Sanchez-Rodrigues E., Egea -Zorrilla A., Plaza- Diaz Ju., Aragon-V ela Je., Munoz-Q uezada S., Tercedor-S anchez L., et al. Th e Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. 2020 Feb 26;12(3):605. doi: 10.3390/nu12030605
27. Qin J., Li Y., Cai Z., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi:10.1038/nature11450
28. Ranjan R., Rani A., Metwally A., McGee H.S., Perkins D. L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun. 2016;469(4):967-977. doi:10.1016/j.bbrc.2015.12.083
29. Zeisel S. H., Warrier M. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu Rev Nutr. 2017;37:157-181. doi:10.1146/annurev-nutr-071816–064732
30. Subramaniam S., Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–1353. doi:10.1111/bph.13959
31. Heianza Y., Ma W., Manson J. E., Rexrode K. M., Qi L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-A nalysis of Prospective Studies. J Am Heart Assoc. 2017;6(7): e004947. Published 2017 Jun 29. doi:10.1161/JAHA.116.004947
32. Yoshida N., Yamashita T, Hirata K-i. Gut Microbiome and Cardiovascular Diseases. Diseases 2018, 6(3): 56. doi:10.3390/diseases6030056
33. Gomes J.M.G., Costa J. A., Alfenas R. C.G. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism. 2017;68:133–144. doi:10.1016/j.metabol.2016.12.009
34. Louis P., Flint H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29–41. doi:10.1111/1462–2920.13589
35. Mamic P., Chaikijurajai T., Tang W. H.W. Gut microbiome – A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol. 2021;152:105–117. doi:10.1016/j.yjmcc.2020.12.001
36. Trudy M. Wassenaar, Valentina A. Juncos and Kurt Zimmermann..Interactions between the Gut Microbiome, Lung Conditions, and Coronary Heart Disease and How Probiotics Aff ect Th ese. Int.J.Mol.Sci. 2021,22(18), 9700. doi:10.3390/ijms22189700.Mikhed
37. Mikhed Y., Daiber A., Stiven S., Mitochondrial Oxidative Stress, Mitohondrial DNA Damage and TheirRole in Age- Related Vascular Dysfunction. Int J Mol Sci. 2015;16(7):15918–15953. doi: 10.3390/ijms160715918
38. Vinolo M.A., Rodrigues H. G., Nochbar R. T., Curi R. Regulation of infl ammation by short chain fatty acids. Nutrients.2011;3(10):858–876. doi:10.3390/nu3100858
39. Tang W.H., Wang Z., Levison B. S., et al. Intestinal microbial metabolism of fh osfh atidylcholine and cardiovascular risk. N Eng J Med. 2013; 368(17):1575–1584. doi:10.1038/nm.3145
40. Pluznick J. A. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes.2014;5(2): 202–207. doi:10.4161/gmic.27492
41. Rogler G., Rosano G. Th e heart and the gut. Eur. Heart J. 2014; 35 (7): 426–430. doi: 10.1093/eurheartj/eht271. PMID: 23864132.
42. Chernevskaya E. A., Beloborodova N. V. Gut Microbiome in Critical Illness (Review). General Reanimatology. 2018;14(5):96–119. (in Russ.) doi: 10.15360/1813–9779–2018–5–96–119
43. Pathan N., Burmester M., Adamovic T., et al. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am. J. Respir. Crit. Care Med. 2011; 184 (11): 1261–1269. doi: 10.1164/rccm.201104–0715OC
44. Lam V., Su J., Hsu A., Gross G. J., Salzman N. H., Baker J. E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016; 11 (8): e0160840. doi: 10.1371/journal.pone.0160840
45. Johnson B. M., Gaudreau M. C., Al- Gadban M.M., Gudi R., Vasu C. Impact of dietary deviation on disease progression and gut microbiome composition in lupusprone SNF1 mice. Clin Exp Immunol. 2015;181(2):323– 337. doi:10.1111/cei.12609
46. Kljuchnikova O.A., Mazurov V. I., Makeeva T. I., Vilburn P. Porazhenija serdca u bolnyh sistemnoj krasnoj volchankoj. [Heart disease in patients with systemic lupus erythematosus]. Rossijskij semejnyj vrach.2006; 4:41–43. (in Russ.). doi:10.1042/CS20180841
47. Li Y., Wang H. F., Li X., et al. Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci (Lond). 2019;133(7):821–838. doi:10.1042/CS20180841
48. Mu Q., Zhang H., Liao X., et al. Control of lupus nephritis by changes of gut microbiota. Microbiome. 2017;5(1):73. Published 2017 Jul 11. doi:10.1186/s40168–017-0300–8
49. de la Visitación N., Robles- Vera I., Toral M., Duarte J.. Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Ery the mato sus. Nutrients. 2019;11(11):2676. Published 2019 Nov 5. doi:10.3390/nu11112676
50. Kasselman L.J., Vernice N. A., DeLeon J., Reiss, A. B. Th e gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis. 2018, 271, 203–213. doi: 10.1016/j.atherosclerosis
51. López P., de Paz B., Rodríguez- Carrio J., et al. Th 17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072. Published 2016 Apr 5. doi:10.1038/srep24072
52. Zegarra-R uiz D.F., El Beidaq A., Iñiguez A. J., et al. A Diet-S ensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host Microbe. 2019;25(1):113–127.e6. doi:10.1016/j.chom.2018.11.009
53. Matalygina O. A. Nutrition – intestinal microbiota – cardiovascular diseases. A new dimensionnull. Medicine: Th eory and Practice.2019;4(1):271–276. (in Russian)
54. Ierardi E., Sorrentino C., Principi M., et al. Intestinal microbial metabolism of phosphatidylchline: a novel insight in the cardiovascular risk scenario. Hepatobiliary Surg Nutr. 2015; 4(4): 289–92. doi: 10.3978/j.issn.2304–3881.2015.02.01
55. LiuYa., Dai M. Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis. Mediators of Inflammation. 2020, Feb:4634172. doi: 10.1155/2020/4634172
Review
For citations:
Nesterenko Z.V., Khavkin A.I., Novikova V.P., Listopadova A.P. Intestinal microbiota and cardiovascular diseases. Experimental and Clinical Gastroenterology. 2022;(3):125-133. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-199-3-125-133