Preview

Experimental and Clinical Gastroenterology

Advanced search

The possibilities of soluble selectins in the prediction of severe fi brosis in nonalcoholic fatty liver disease

https://doi.org/10.31146/1682-8658-ecg-199-3-50-56

Abstract

The aim of the work was to study the relationship of selectins with hepatic fi brosis in nonalcoholic fatty liver disease (NAFLD).

Material and methods. In 40 patients with histologically confi rmed NAFLD (42.5% of women, 57.5% of men) aged 19 to 65 years (mean age — 40.93±1.95 years), the levels of E-, P- and L-selectins in the blood was studied. Severe liver steatosis was present in 47.5% of patients, nonalcoholic steatohepatitis was observed in 57.5% of cases, and severe liver fi brosis was detected in 22.5% of patients. The control group consisted of 60 practically healthy people.

Results. The increase of plasma levels of all selectins was observed in NAFLD. The blood levels of E-selectin elevated with increasing of histological signs of hepatic steatosis. The concentration of E- and P-selectins in the blood was higher in patients with nonalcoholic steatohepatitis than in cases of its absence. The maximum values of E- and P-selectins in the blood were present in severe liver fi brosis. Correlation of soluble E- and P-selectins with fi brosis index was determined. The risk of severe fi brosis in NAFLD increased 27-fold with E-selectin values above 89 ng/ml and 33-fold in cases of P-selectin values greater than 166 ng/ml. The accuracy of the above levels of E- and P-selectins in predicting severe fi brosis in NAFLD was 80.0 and 82.5%, respectively. The probability of severe liver fi brosis in NAFLD was related with the presence of insulin resistance and increased levels of P-selectin in the blood.

Conclusion. Determination of the profi le of soluble selectins in NAFLD allows us to state the severity of liver fi brosis and stratify patients into groups with its diff erent severity.

About the Authors

P. V. Koroy
A.V. Yagoda Stavropol State Medical University
Russian Federation

Pavel V. Koroy - MD, PhD, Professor, Professor of Department of Hospital Therapy; Scopus Author ID: 56288630200.

355017, Stavropol, Mira str., 310



Yu. A. Kravchenko
A.V. Yagoda Stavropol State Medical University
Russian Federation

Yuliya A. Kravchenko - candidate of Department of Hospital Therapy.

355017, Stavropol, Mira str., 310



A. V. Yagoda
A.V. Yagoda Stavropol State Medical University
Russian Federation

Alexander V. Yagoda - MD, PhD, Professor, Honored Worker of Science of Russian Federation, Head of Department of Hospital Therapy; Scopus Author ID: 7007153293, ResearcherID: B-5336–2017.

355017, Stavropol, Mira str., 310



References

1. Lazebnik L. B., Golovanova E. V., Turkina S. V., et al. Non-alcoholic fatty liver disease in adults: clinic, diagnostics, treatment. Guidelines for therapists, third version. Experimental and Clinical Gastroenterology. 2021; 185(1): 4–52. (In Russ.) doi: 10.31146/1682–8658-ecg-185–1–4–52

2. Berardo C., Pasqua L. G. Di, Cagna M. et al. Nonalcoholic fatty liver disease and non-alcoholic steatohepatitis: current issues and future perspectives in preclinical and clinical research. Int. J. Mol. Sci. 2020; 21(24): 9646. doi: 10.3390/ijms21249646

3. Perumpail B. J., Khan M. A., Yoo E. R., et al. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J. Gastroenterol. 2017; 23(47): 8263–8276. doi: 10.3748/wjg.v23.i47.8263

4. Estes C., Anstee Q. M., Arias-L oste M. T. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018; 69: 896–904. doi: 10.1016/j.jhep.2018.05.036

5. Weston C. J., Shepherd E. L., Claridge L. C., et al. Vascular adhesion protein-1 promotes liver infl ammation and drives hepatic fi brosis. J. Clin. Invest. 2015; 125: 501–520. doi: 10.1172/JCI73722

6. Hammoutene A., Rautou P. E. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J. Hepatol. 2019; 70(6): 1278–1291. doi: 10.1016/j.jhep.2019.02.012

7. Miyao M., Kotani H., Ishida T., et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab. Invest. 2015; 95: 1130–1144. doi: 10.1038/labinvest.2015.95

8. Gilyazova G. I., Mukhoramova I. S., Rudenko Yu. A., et al. Role of adhesion molecules in immune response. Journal of Young Scientist. 2012; 2: 21–27. (In Russ.)

9. Komshilova K. A. Abdominal obesity and non-alcoholic fattyliver disease: clinical, laboratory and morphological comparisons: dissertation thesis of the candidate of medical sciences. Moscow, 2015. 26 P. (In Russ.)

10. Bilgir F., Bilgir O., Calan M., Calan O., Yuksel A. The Levels of Soluble Intercellular Adhesion Molecule, Vascular Adhesion Molecule and Se-S electin Levels in Patients with Non-A lcoholic Fatty Liver Disease. J Autacoids Horm. 2015;5:108. doi: 10.4172/2161–0479.1000108

11. Drescher H. K., Schippers A., Rosenhain S., et al. L-Selectin/ CD62L is a key driver of non-alcoholic steatohepatitis in mice and men. Cells. 2020; 9: 1106. doi: 10.3390/cells9051106

12. Simons N., Bijnen M., Wouters K. A. M. Th e endothelial function biomarker soluble E-selectin is associated with nonalcoholic fatty liver disease. Liver Int. 2020; 40(5): 1079– 1088. doi: 10.1111/liv.14384

13. Ustyol A., Ustyol E. A., Gurdol F., Kokali F. P-selectin, endocan, and some adhesion molecules in obese children and adolescents with non-alcoholic fatty liver disease. Scand. J. Clin. Lab. Invest. 2017; 77(3): 205–203. doi: 10.1080/00365513.2017.1292363

14. Hammoutene A., Biquard L., Lasselin J. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes infl ammation and fi brosis. J. Hepatol. 2020; 72(3): 528–538. doi: 10.1016/j.jhep.2019.10.028

15. Kus E., Kaczara P., Czyzynska- Cichon I. LSEC fenestrae are preserved despite pro-infl ammatory phenotype of liver sinusoidal endothelial cells in mice on high fat diet. Front. Physiol. 2019; 10: 6. doi: 10.3389/fphys.2019.00006

16. Slyadnev S. А., Koroy P. V. Potential of adhesins in diagnostics of nonalcoholic fatty liver disease. Medical news of North Caucasus. 2017; 12(1): 98–99. (In Russ.) doi: 10.14300/mnnc.2017.12028

17. Yagoda A.V., Koroy P. V., Slyadnev S. A. Positive correlation of the level of molecules of superfamily immunoglobulins ICAM-1, VCAM-1 and PECAM-1 with the index of fi brosis in nonalcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2017;(2):45–51. (In Russ.)

18. VanSaun M. N., Mendonsa A. M., Gorden D. L. Hepatocellular proliferation correlates with infl ammatory cell and cytokine changes in a murine model of nonalchoholic fatty liver disease. PLoS One. 2013; 8(9): e73054. doi: 10.1371/journal.pone.0073054

19. Pasarín M., Abraldes J. G., Liguori E., et al. Intrahepatic vascular changes in non-alcoholic fatty liver disease: potential role of insulin- resistance and endothelial dysfunction. World J. Gastroenterol. 2017; 23(37): 6777–6787. doi: 10.3748/wjg.v23.i37.6777

20. Marrone G., Shah V. H., Gracia- Sancho J. Sinusoidal communication in liver fi brosis and regeneration. J. Hepatol. 2016; 65: 608–617. doi: 10.1016/j.jhep.2016.04.018

21. Almeda-V aldes P., Aguilar Olivos N. E., Barranco-F ragoso B., et al. Th e role of dendritic cells in fi brosis progression in nonalcoholic fatty liver disease. Biomed. Res. Int. 2015; 2015: 768071. doi: 10.1155/2015/768071

22. Parrinello C. M., Rudolph B. J., Lazo M., et al. Asso ci ations of insulin resistance and glycemia with liver enzymes in hispanic/latino youths: results from the Hispanic Community Children’s Health Study/Study of Latino Youth (SOL Youth). J. Clin. Gastroenterol. 2019; 53(2): e46-e53. doi: 10.1097/MCG.0000000000000946

23. Vilaseca M., García- Calderó H., Lafoz E., et al. Th e anticoagulant rivaroxaban lowers portal hypertension in cirrhotic rats mainly by deactivating hepatic stellate cells. Hepatology. 2017; 65: 2031–2044. doi: 10.1002/hep.29084

24. Kopec A. K., Joshi N., Towery K. L., et al. Th rombin inhibition with dabigatran protects against high-fat diet-induced fatty liver disease in mice. J. Pharmacol. Exp. Th er. 2014; 351: 288–297. doi: 10.1124/jpet.114.218545

25. Virović-J ukić L., Stojsavljević-S hapeski S., Forgač J., et al. Non-alcoholic fatty liver disease – a procoagulant condition? Croat. Med. J. 2021; 62: 25–33. doi: 10.3325/cmj.2021.62.25

26. Taipale T., Seppälä I., Raitoharju E., et al. Fatty liver is associated with blood pathways of infl ammatory response, immune system activation and prothrombotic state in Young Finns Study. Scientifi c Reports. 2018; 8: 10358. doi: 10.1038/s41598–018–28563-y

27. Madan S. A., John F., Pitchumoni C. S. Nonalcoholic fatty liver disease and mean platelet volume: a systemic review and meta-analysis. J. Clin. Gastroenterol. 2016; 50: 69–74. doi: 10.1097/MCG.0000000000000340

28. Potze W., Siddiqui M. S., Sanyal A. J. Vascular disease in patients with nonalcoholic fatty liver disease. Semin. Th romb. Hemost. 2015; 41: 488–493. doi: 10.1055/s-0035–1550433

29. Lefere S., Van de Velde F., Devisscher L., et al. Serum vascular cell adhesion molecule-1 predicts signifi cant liver fi brosis in non-alcoholic fatty liver disease. Int. J. Obes. (Lond.). 2017; 41(8): 1207–1213. doi: 10.1038/ijo.2017.102

30. Ajmera V., Perito E. R., Bass N. M., et al. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology. 2017; 65(1): 65–77. doi: 10.1002/hep.28776


Review

For citations:


Koroy P.V., Kravchenko Yu.A., Yagoda A.V. The possibilities of soluble selectins in the prediction of severe fi brosis in nonalcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2022;(3):50-56. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-199-3-50-56

Views: 228


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)