Биологическая роль казоморфинов (часть 2): роль в патологии человека
https://doi.org/10.31146/1682-8658-ecg-196-12-110-118
Аннотация
Вторая часть обзора о казоморфинах посвящена роли этих биологически активных пептидов—продуктов гидролиза фосфопротеинов. Приведены убедительные данные о влиянии на систему иммунитета, антионкогенном действии, на моторику и тонус гладких мышечных волокон, способности управлять и другими аспектами деятельности ЖКТ — транспортной функцией кишечного эпителия, всасыванием воды и пр. Доказано действие β–казоморфинов на эндокринную систему, прежде всего на выделение инсулина и соматостатина. Особого внимания заслуживает вопрос влияния β–казоморфинов на материнский организм во время беременности и вскармливания новорожденного. Это важно, поскольку β–казоморфины могут проникать в ЦНС, являясь одним из факторов послеродового психоза и депрессии. Изучение механизмов действия β–казоморфинов приблизит учёных к пониманию генеза и патогенеза значительного спектра патологий.
Об авторах
А. И. ХавкинРоссия
Хавкин Анатолий Ильич, д. м. н., профессор, главный научный сотрудник отдела гастроэнтерологии Научно-исследовательского клинического института педиатрии им. академика Ю. Е. Вельтищева
125412, Москва, ул. Талдомская, 2
308015, Белгородская область, Белгород, ул. Победы, д. 85
М. Н. Васиа
Россия
Васиа Мари Нечеса, главный врач больницы
GA000, Аккра, а/я OS 3410 ОСУ
В. П. Новикова
Россия
Новикова Валерия Павловна, д. м. н., профессор, зав. кафедрой пропедевтики детских болезней с курсом общего ухода за детьми, зав. лабораторией «Медико-социальных проблем в педиатрии»
194100, Санкт-Петербург, ул. Литовская, д. 2, литера Ж
Список литературы
1. Ul Haq MR. β-Casomorphin II, β-Casomorphins. 2020:51–63. doi:10.1007/978–981–15–3457–7.
2. Ranvir S., Awasti N., Nikam P., Sharma N. Research-Based Biofunctional Aspects of Milk Protein-Derived Bioactive Peptides. Dairy Processing: Advanced Research to Applications. 2020. pp.133–159. doi:10.1007/978–981–15–2608–4
3. Wada Y, Lönnerdal B. Bioactive peptides derived from human milk proteins. Curr Opin Clin Nutr Metab Care. 2020 May;23(3):217–222. doi:10.1097/MCO.0000000000000642.
4. Ul Haq M. R. Gluten Exorphins. Opioid Food Peptides. 2020;3: 71–88. doi:10.1007/978–981–15–6102–3.
5. Görgüç A., Gençdağ E., Yılmaz F. M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments – A review. Food Res Int. 2020 Oct;136:109504. doi:10.1016/j.foodres.2020.109504.
6. Davide Arillotta, Fabrizio Schifano, Flavia Napoletano, et al. Novel Opioids: Systematic Web Crawling Within the ePsychonauts’ Scenario. Front Neurosci. 2020 Mar 18;14:149. doi:10.3389/fnins.2020.00149.
7. Richard J. FitzGerald, Maria Cermeño, Mohammadreza Khalesi, Thanyaporn Kleekayai, Miryam Amigo-Benavent, Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods. 2019: 103636. doi:10.1016/j.jff.2019.103636.
8. Maslennikova N.V., Sazonova E. N., Timoshin S. S. Effect of-casomorphin-7 on DNA synthesis in cell populations of newborn albino rats. Bulletin of Experimental Biology and Medicine. 2008; 145 (2): 210–212.
9. Zong Y., Wei-Hua C., Zhang Y., Xiang S. Effects of intragastric beta-casomorphin-7 on somatostatin and gastrin gene expression in rat gastric mucosa. World J Gastroenterol. 2007 Apr 14;13(14):2094–9. doi:10.3748/wjg.v13.i14.2094.
10. Pan C., Zou S., Chen W., Rossi J., Zolovick A. J. Effect of feeding β-casomorphin-7 on the digestive tract development in early weaning piglets. Chinese Journal of Veterinary Science. 2006; 21: 231–235.
11. Qin Y., Cong-zhen L.U.O., Xin M., Dong Z., Wang Y. Effect of β-casomorphin-7 on growth, growth-related hormone and GHR mRNA expression in rats. Acta Nutrimenta Sinica. 2004; 2: 212–234.
12. Trompette A., Claustre J., Caillon F., Jourdan G., Chayvialle J. A., Plaisancie P. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. Journal of Nutrition. 2003;133 (11):3499–3503.
13. Marklakova A.S., Nazarenko I. V., Dubynin V., Nezavibat’ko A.V.N., Alfeeva L. A., Kamenskĭ A. A. The effect of beta-casomorphin-7 on the level of food and defense motivations in different types of learning. Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova. 1995;45 (6):1143–1150. (in Russ.)
14. Dubynin V.A., Malinovskaya I. V., Belyaeva Y. A., Bibby N. J., Wasmuth H. E. Delayed effect of exorphins on learning of albino rat pups. Biology Bulletin. 2008;35 (1):43–49. (in Russ.)
15. Schusdziarra V. Effect of beta-casomorphins and analogs on insulin release in dogs. Endocrinology. 1983;112 (3):885–889.
16. Nedvídková J., Kasafírek E., Dlabac V. Effect of beta-casomorphin and its analogue on serum prolactin in the rat. Experimental and Clinical Endocrinology. 1985, 85 (2), 249–252. (in Russ.)
17. Zoghbi S., Trompette A., Claustre J., El Homsi M., Garzon J., Jourdan G., et al. β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway. American Journal of Physiology: Gastrointestinal and Liver Physiology. 2006;290: G1105–G1113.
18. Johansson M.E.V., Phillipson J., Petersson A., Velcich L., Holm Hansson G. C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the Academy of Natural Sciences. 2008;105:15064–15069.
19. Menezes J.S., Mucida D. S., Cara D. C., et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int Immunol. 2003 Mar;15(3):447–55. doi:10.1093/intimm/dxg043.
20. Okano M., Ohnota H., Sasaki R. Protein deficiency impairs erythropoiesis in rats by reducing serum erythropoietin concentration and the population size of erythroid precursor cells. J Nutr. 1992 Jul;122(7):1376–83. doi:10.1093/jn/122.7.1376.
21. Aschkenasy A. [Compared effects of casein and various mixtures of amino acids on the regeneration of blood proteins after nitrogen starvation in rats]. C R Seances Soc Biol Fil. 1970;164(6):1208–13. French. PMID:4102250.
22. Elitsur Y., Luk G. D. Beta-casomorphin (BCM) and human colonic lamina. Propria lymphocyte proliferation. Clin Exp Immunol. 1991 Sep;85(3):493–7. doi:10.1111/j.1365–2249.1991.tb05755.x.
23. Migliore-Samour D., Jolles P. Casein, a prohormone with an immunomodulating role for the newbom? Experientia. 1988 Mar 15;44(3):188–93. doi:10.1007/BF01941703.
24. European Food Safety Authority (EFSA). Review of the potential health impact of β-casomorphins and related peptides. Scientific Report no. 231, 2009; 1–107.
25. Fiedorowicz E., Kaczmarski M., Cieślińska A., SienkiewiczSzłapka E., Jarmołowska B., Chwała B., Kostyra E. β-casomorphin-7 alters μ-opioid receptor and dipeptidyl peptidase IV genes expression in children with atopic dermatitis. Peptides. 2014;62:144–149. doi:10.1016/j.peptides.2014.09.020.
26. Haq M.R.U., Kapila R., Sharma R., Saliganti V., Kapila S. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur. J. Nutr. 2014;53:1039–1049. doi:10.1007/s00394–013–0606–7.
27. Kurek M., Rueff F., Czerwionka-Szaflarska M., Doroszewska G., Przybilla B. Exorphins derived from cow’s milk casein elicit pseudo-allergic wheal-and-flare reactions in healthy children. French Rev. Allergol. Clin. Immunol. 1996;36:191–196. doi:10.1016/S0335–7457(96)80082–7.
28. Reddi S., Kapila R., Ajay Kumar Dang A. K., Kapila S. Evaluation of allergenic response of milk bioactive peptides using mouse mast cell. Milchwissenschaft - Milk Sci. Internat. 2012;67:189.
29. Trivedi M.S., Hodgson N. W., Walker S. J., Trooskens G., Nair V., Deth R. C. Epigenetic effects of casein-derived opioid peptides in SH-SY5Y human neuroblastoma cells. Nutrition & Metabolism. 2015;12(1):54.
30. Zielińska E., Zubowska M., Bodalski J. Polymorphism within the glutathione S-transferase P1 gene is associated with increased susceptibility to childhood malignant diseases. Pediatric Blood Cancer. 2004; 43(5):552–559.
31. Schnekenburger M., Karius T., Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxifi cation toward cancer prevention and diagnosis. Frontiers in Pharmacology. 2014; 5:170.
32. Barnett M.P., McNabb W.C., Roy N. C., Woodford K. B., Clarke A. J. Dietary A1 b-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2-casein in Wistar rats. Int. J. Food Sci. Nutr. 2014; 65:720–727.
33. Ul Haq M. R., Kapila R., Sharma R., Saliganti V., Kapila S. Comparative evaluation of cow-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur. J. Nutr. 2014;53:1039–1049.
34. Pol O., Sasaki M., Jimenez N., Dawson V. L., Dawson T. M., Puig M. M. The involvement of nitric oxide in the enhanced expression of b-opioid receptors during intestinal inflammation in mice. Br. J. Pharmacol. 2005;145:758–766.
35. Ul Haq M. R., Kapila R., Saliganti V. Consumption of b-casomorphins-7/5 induce inflammatory immune response in mice gut through Th2 pathway. J. Funct. Foods. 2014; 8: 150–160.
36. Ul Haq M. R., Kapila R., Sharma R., Saliganti V., Kapila S. Comparative evaluation of cow-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur. J. Nutr. 2014; 53: 1039–1049.
37. Fox J.E., Daniel E. E. Exogenous opiates: their local mechanisms of action in the canine small intestine and stomach. Am. J. Physiol. 1987;253:179–188.
38. Fox-Threlkeld J.E., Daniel E. E., Christinck F., et al. Identification of mechanisms and sites of actions of mu and delta opioid receptor activation in the canine intestine. J. Pharmacol. Exp. Ther. 1994;268:689–700.
39. Kosterlitz H.W., Paterson S. J., Robson L. E. Characterization of the kappa-subtype of the opiate receptor in the guinea-pig brain. Br. J. Pharmacol. 1981;73(4): 939–949.
40. Attali B., Gouarderes C., Mazarguil H., Audigier Y., Cros J. Evidence for multiple “Kappa” binding sites by use of opioid peptides in the guinea-pig lumbo-sacral spinal cord. Neuropeptides. 1982;3(1):53–64.
41. Tan Y.F., Chen W. H., Zou S. X. The effect of beta casomorphin on gastrin level in murine serum. Nanjing Nongye Daxue Xuebao. 2001;24: 63–66.
42. Zhang Y.S., Zou S. X., Zhao R. Q., Chen W. H. Effect of Bioactive Peptides Derived from Casein on mRNA Express of Gastrin in Early Weaning Piglet. Nongye Shengwu Jishu Xuebao. 2004;12: 61–65.
43. Tan Y.F., Chen W. H., Zou S. X. The effect of beta Casomorphin on piglets’ stomach antrum under superfusion. Nanjing Nongye Daxue Xuebao. 2000;23: 72–75.
44. Song X.D., ZUO W.Y., Fan Y. L., YS Z. Effect of β-casomorphin-7 from milk on the absorption of glucose in vitro and its mechanism. world journal of gastroenterology. 2009. pp. 1947–1951.
45. Yin H., Miao J., Zhang Y. Protective effect of beta-casomorphin-7 on type 1 diabetes rats induced with streptozotocin. Peptides. 2010;31: 1725–1729.
46. Gui D., Guo Y., Wang F., Liu W., Chen J., et al. Astragaloside IV, a novel antioxidant, prevents glucose-Induced podocyte apoptosis in vitro and in vivo. PLoS One. 2012;7(6): e39824. doi:10.1371/journal.pone.0039824.
47. Sheng C.X., Zhang C. J., Li Y. Z., Sun Y. M. Effect of β-casomorphin-7 on myocardial hypertrophy in hyperthyroidism-induced cardiomyopathy. Eur Rev Med Pharmacol Sci. 2020 Jun;24(11):6380–6389. doi:10.26355/eurrev_202006_21536.
48. Ahmadpanah M., Nazaribadie M., Aghaei M., et al. Influence of adjuvant detached mindfulness and stress management training compared to pharmacologic treatment in primiparae with postpartum depression. Arch Womens Ment Health. 2018 Feb;21(1):65–73. doi:10.1007/s00737–017–0753–6.
49. Andrade C. The safety of duloxetine during pregnancy and lactation. J Clin Psychiatry. 2014 Dec;75(12): e1423–7. doi:10.4088/JCP.14f09631.
50. Pawluski J., Charlier T., Lieblich S., et al. Reproductive experience alters corticosterone and CBG levels in the rat dam. Physiol Behav. 2009 Jan 8;96(1):108–14. doi:10.1016/j.physbeh.2008.09.004.
51. McCutcheon J.E., White F. J., et al. Individual differences in dopamine cell neuroadaptations following cocaine self-administration. Biol Psychiatry. 2009 Oct 15; 66(8):801–3. doi:10.1016/j.biopsych.2009.04.018.
52. Moll G.H., Mehnert C., et al. Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Brain Res Dev Brain Res. 2000 Feb 7;119(2):251–7. doi:10.1016/s0165–3806(99)00182–0.
53. Стоволосов И. С., Дубынин В. А., Каменскии А. А. Участие дофаминергической и опиоидной систем мозга в регуляции зависимого от матери поведения новорожденных белых крыс. Бюллетень экспериментальной биологии и медицины. 2010. - N 9 - С. 248–252.
54. Полетаев АБ. Иммунохимические признаки изменений в опиатной системе у детей, страдающих аутизмом. Возможные причины и следствия // Клиническая патофизиология. – 2016. – № 1. – С. 48–54.
55. Гутикова ЛВ. Современные способы коррекции нарушений лактационной функции // Журнал ГрГМУ. 2012. № 2 (38). URL: https://cyberleninka.ru/article/n/sovremennyesposoby-korrektsii-narusheniy-laktatsionnoy-funktsii (дата обращения: 30.11.2020)
56. Симашкова НВ, Якупова ЛП, Клюшник ТП. Междисциплинарные подходы к проблеме детского и атипичного эндогенного аутизма. Психиатрия и современное общество. Материалы III Съезда психиатров и наркологов Республики Беларусь. – Минск, 2009. – С. 291–293.
57. Liu K.Y., King M., Bearman P. S. Social influence and the autism epidemic. AJS. 2010 Mar;115(5):1387–434. doi:10.1086/651448.
58. Panksepp J. A neurochemical theory of autism. J. Trends Neurosci. 1979; (2):174–177.
59. Previc F. H. Prenatal influences on brain dopamine and their relevance to the rising incidence of autism. Medical Hypotheses. 2007;(1):46–60.
60. Cieślińska A., Kostyra E., Savelkoul H. F.J. Treating autism spectrum disorder with gluten-free and casein-free diet: The underlying microbiota-gut-brain axis mechanisms. J. Clin. Immunol. Immunother. 2017;3:9.
61. Whiteley P., Shattock P. Biochemical aspects in autism spectrum disorders: Updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert. Opin. Th er. Targets. 2002;6:175–183. doi:10.1517/14728222.6.2.175.
62. Sokolov O., Kost N., Andreeva O., et al. Autistic children display elevated urine levels of bovine casomorphin-7 immunoreactivity. Peptides. 2014;56:68–71. doi:10.1016/j.peptides.2014.03.007.
63. Gradin K., Hedner J., Hedner T., et al. Plasma atrial natriuretic peptide and blood pressure during chronic salt loading in spontaneously hypertensive rats with right atrial appendectomy. J. Neural Transmission. 1987; (69):255–264.
64. Bansinath M., Ramabadran K., Turndorf H., Puig M. M. Effect of Yohimbine on Nociceptive threshold in normoglycemic and streptozotocin-treated hyperglycemic mice. Pharmacology Biochemistry and Behavior. 1989;33(2): 459–463.
65. Morin-Surun M-P., Boudinot E., Fournie-Zaluski M., Champagnat J., Roques B-P., Denavit-Saubie M. Control of breathing by endogenous opioid peptides: possible involvement in sudden infant death syndrome. Neurochemistry international. 1992;20:103–7. 10.1016/0197–0186(92)90132-B.
66. Sun Z., Zhang Z., Wang X., Cade R., Elmir Z., Fregly M. Relation of ОІ-casomorphin to apnea in sudden infant death syndrome. Peptides. 2003 Jun;24(6):937–43. doi:10.1016/s0196–9781(03)00156–6.
67. Nausch I., Mentlein R., Heymann E. The degradation of bioactive peptides and proteins by dipeptidyl peptidase IV from human placenta. Biol Chem Hoppe Seyler. 1990 Nov;371(11):1113–8. doi:10.1515/bchm3.1990.371.2.1113.
68. Wasilewska J., Sienkiewicz-Szłapka E., Kuźbida E., Jarmołowska B., Kaczmarski M., Kostyra E. The exogenous opioid peptides and DPPIV serum activity in infants with apnoea expressed as apparent life threatening events (ALTE). Neuropeptides. 2011 Jun;45(3):189–95. doi:10.1016/j.npep.2011.01.005.
Рецензия
Для цитирования:
Хавкин А.И., Васиа М.Н., Новикова В.П. Биологическая роль казоморфинов (часть 2): роль в патологии человека. Экспериментальная и клиническая гастроэнтерология. 2021;(12):110-118. https://doi.org/10.31146/1682-8658-ecg-196-12-110-118
For citation:
Khavkin A.I., Vasia M.N., Novikova V.P. The biological role of casomorphins (part 2): role in human pathology. Experimental and Clinical Gastroenterology. 2021;(12):110-118. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-196-12-110-118