Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Микробиом кишечника при стресс-индуцированных расстройствах: новый взгляд на синдром нейровоспаления

https://doi.org/10.31146/1682-8658-ecg-196-12-74-82

Полный текст:

Аннотация

В обзоре представлены современные представления об изменениях количественного и качественного состава кишечного микробиома человека и их роли в развитии стресс-индуцированных психических и неврологических расстройств, нарушений пищевого поведения, аутизме и пр. Показан дуализм роли комменсальных представителей микробиома, обладающих способностью модулировать метаболические и сигнальные реакциии у условно здоровых людей и пациентов, страдающих различными неврологическими, психоэмоциональными и когнитивными расстройствами, ассоциированными с развитием нейровоспаления. Установленные зарубежными исследователями благоприятные и негативные эффекты связывают с наличием у кишечной микробиоты специфических поверхностных мембранных белков, продукцией определенных короткоцепочечных жирных кислот, деградацией муцина, изменением барьерной функции кишечника, продукцией эндотоксина, а также синтезом некоторых нейромедиаторов и нейротрансмиттеров. Рассматриваются перспективы и сложности поиска новых микробных биомаркеров для прогноза развития стрессиндуцированных заболеваний, а также для создания новых микробных нутрицевтиков и лекарственных препаратов нового поколения на основе живых бактерий.

Об авторах

Е. О. Халтурина
ФГАОУ ВО Первый МГМУ имени И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Халтурина Евгения Олеговна, к. м. н., доцент кафедры микробиологии, вирусологии и иммунологии им. А. А. Воробьева ИОЗ им. Ф. Ф. Эрисмана
Scopus Author ID: 57196080380
SPIN: 2813–4952
Web of Science Researcher ID: AAW-9175–2021

119048, г. Москва, ул. Трубецкая, д. 8/1



Л. А. Клюева
ФГАОУ ВО РНИМУ им. Н. И. Пирогова Министерства здравоохранения Российской Федерации
Россия

Клюева Людмила Анатольевна, к. м. н. доцент кафедры анатомии человека лечебного факультета
Scopus Author ID: 46861343200

117997, Москва, ул. Островитянова д. 1



Р. Е. Бошьян
ФГАОУ ВО Первый МГМУ имени И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Бошьян Роман Евгеньевич, к. м. н., доцент кафедры микробиологии, вирусологии и иммунологии им. А. А. Воробьева ИОЗ им. Ф. Ф. Эрисмана
Scopus Author ID: 57218869204

119048, г. Москва, ул. Трубецкая, д. 8/1



Г. М. Зембатов
ФГАОУ ВО Первый МГМУ имени И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Зембатов Георгий Маратович, студент 3 курса Клинического Института Детского Здоровья имени Н. Ф. Филатова

119048, г. Москва, ул. Трубецкая, д. 8/1



А. М. Алимова
ФГАОУ ВО Первый МГМУ имени И. М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Алимова Адия Митхатовна, студент 3 курса Клинического Института Детского Здоровья имени Н. Ф. Филатова

119048, г. Москва, ул. Трубецкая, д. 8/1



Список литературы

1. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. ed. American Psychiatric Association, American Psychiatric Association. Washington, D.C: American Psychiatric Association, 2013. 947 p.

2. Zipfel S., Giel K. E., Bulik C. M., et al. Anorexia nervosa: aetiology, assessment, and treatment. Lancet Psychiatry. 2015, vol. 2, no. 12, p. 1099–1111. doi:10.1016/S2215–0366(15)00356–9.

3. Zipfel S., Löwe B., Deter H. C., et al. Long-term prognosis in anorexia nervosa: lessons from a 21-year follow-up study. The Lancet. 2000, vol. 355, no. 9205. pp, 721–722. doi:10.1016/S0140–6736(99)05363–5.

4. Borgo F., Riva A., Benetti A., et al. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PloS One. 2017, vol. 12, no. 6, e0179739. doi:10.1371/journal.pone.0179739.

5. Kleiman S.C., Watson H. J., Bulik-Sullivan E.C., et al. The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and Eating Disorder Psychopathology. Psychosom. Med. 2015, vol. 77, no. 9, pp. 969–981. doi:10.1097/PSY.0000000000000247.

6. Ruusunen A., Rocks T., Jacka F., et al. The gut microbiome in anorexia nervosa: relevance for nutritional rehabilitation. Psychopharmacology (Berl.). 2019, vol. 236, no. 5, pp. 1545–1558. doi:10.1007/s00213–018–5159–2.

7. Mack I., Cuntz U., Grämer C., et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci. Rep. 2016, vol. 6, p. 26752. doi:10.1038/srep26752.

8. Ley R.E., Bäckhed F., Turnbaugh P., et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 2005, vol. 102, no. 31. pp. 11070–11075. doi:10.1073/pnas.0504978102.

9. Morita C., Tsuji H., Hata T., et al. Gut Dysbiosis in Patients with Anorexia Nervosa. PLOS ONE. 2015, vol. 10, no. 12. pp. e0145274. doi:10.1371/journal.pone.0145274.

10. Scott K.P., Gratz S. W., O Sheridan P., et al. The influence of diet on the gut microbiota. Pharmacol. Res. 2013, vol. 69, no. 1. pp. 52–60. doi:10.1016/j.phrs.2012.10.020.

11. Armougom F., Henry M., Vialettes B., et al. Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. PLOS ONE. 2009, vol. 4, no. 9. pp. e7125. doi:10.1371/journal.pone.0007125.

12. Marcobal A., Southwick A. M., Earle K. A., et al. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology. 2013, vol. 23, no. 9. pp. 1038–1046. doi:10.1093/glycob/cwt040.

13. Ktsoyan Z.A., Mkrtchyan M. S., Zakharyan M. K., et al. Systemic Concentrations of Short Chain Fatty Acids Are Elevated in Salmonellosis and Exacerbation of Familial Mediterranean Fever. Front. Microbiol. 2016, vol. 7, p.776. doi:10.3389/fmicb.2016.00776.

14. den Besten G., Lange K., Havinga R., et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013, vol. 305, no 12. pp. G900–G910. doi:10.1152/ajpgi.00265.2013.

15. Chassard C., Delmas E., Robert C., et al. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol. 2012, vol. 62, no. Pt 1, pp. 138–143. doi:10.1099/ijs.0.027375–0.

16. Ze X., Duncan S., Louis P., et al. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012, vol. 6, no. 8, pp. 1535–1543. doi:10.1038/ismej.2012.4.

17. Flint H.J., Scott K. P., Duncan S. H. et al. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012, vol. 3, no. 4, pp. 289–306. doi:10.4161/gmic.19897.

18. Mack I., Penders J., Cook J., et al. Is the Impact of Starvation on the Gut Microbiota Specific or Unspecific to Anorexia Nervosa? A Narrative Review Based on a Systematic Literature Search. Curr. Neuropharmacol. 2018, vol. 16, no. 8, pp. 1131–1149. doi:10.2174/1570159X16666180118101354.

19. Wallace R.J., Mc Kain N. Peptidase activity of human colonic bacteria. Anaerobe. 1997, vol. 3, no. 4. pp. 251–257. doi:10.1006/anae.1997.0080.

20. Rasmussen H.S., Holtug K., Mortensen P. B. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study. Scand. J. Gastroenterol. 1988, vol. 23, no. 2. pp. 178–182. doi:10.3109/00365528809103964.

21. Hamer H.M., De Preter V., Windey K., et al. Functional analysis of colonic bacterial metabolism: relevant to health? Am. J. Physiol. Gastrointest. Liver Physiol. 2012, vol. 302, no. 1. pp. G1–G9. doi:10.1152/ajpgi.00048.2011.

22. Pimentel M., Lin H. C., Enayati P., et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol.-Gastrointest. Liver Physiol. 2006, vol. 290, no. 6, pp. G1089–G1095. doi:10.1152/ajpgi.00574.2004.

23. Geirnaert A., Calatayud M., Grootaert C., et al. Butyrateproducing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017, vol. 7, no. 1, pp. 1–14. doi:10.1038/s41598–017–11734–8.

24. Raevuori A., Haukka J., Vaarala O., et al. The Increased Risk for Autoimmune Diseases in Patients with Eating Disorders. PLOS ONE. 2014, vol. 9, no. 8, p. e104845. doi:10.1371/journal.pone.0104845.

25. Tennoune N., Chan P., Breton J. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry. 2014, vol. 4, no. 10, pp. e458-e458. doi:10.1038/tp.2014.98.

26. Breton J., Legrand R., Akkermann K., et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int. J. Eat. Disord. 2016, vol. 49, no. 8, pp. 805–808. doi:10.1002/eat.22531.

27. Bravo J. A., Forsythe P., Chew M. V., et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. 2011, vol. 108, no. 38. pp. 16050–16055 doi:10.1073/pnas.1102999108.

28. Van de Wouw M., Boehme M., Dinan T. G., et al. Brain Monocyte mobilisation, microbiota & mental illness. Behav Immun. 2019, no.81, pp. 74–91. doi:10.1016/j.bbi.2019.07.019.

29. Peirce J. M., Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res. 2019, vol.97, no.10, pp.1223–1241. doi:10.1002/jnr.24476.

30. Komanduri M., Gondalia S., Scholey A., et al. The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology. 2019, vol.236, no. 5. pp.1559–1571. doi:10.1007/s00213–019–05231–1.

31. Gondalia S., Parkinson L., Stough C., Gut microbiota and bipolar disorder: a review of mechanisms and potential targets for adjunctive therapy. Psychopharmacology. 2019, vol.236, no.5, pp.1433–1443. doi:10.1007/s00213–019–05248–6.

32. Pulikkan J, Mazumder A, Grace T. Role of the Gut Microbiome in Autism Spectrum Disorders. Adv Exp Med Biol. 2019, no.1118, pp. 53–269. doi:10.1007/978–3–030–05542–4_13

33. Gulas E., Wysiadecki G., Strzelecki D., et al. Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatr Pol. 2018, vol.52, no.6, pp. 023–1039. doi:10.12740/PP/OnlineFirst/81103.

34. Osadchiy V., Martin C. R., Mayer E. A. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin Gastroenterol Hepatol. 2019, vol. 7, no. 2, pp. 322–332. doi:10.1016/j.cgh.2018.10.002.

35. Spielman L. J., Gibson D. L., Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018, no.120, pp. 149–163. doi:10.1016/j.neuint.2018.08.005.

36. Karakuła-Juchnowicz H., Pankowicz H., Juchnowicz D., et al. Intestinal microbiota – a key to understanding the pathophysiology of anorexia nervosa? Psychiatr Pol. 2017, vol.51, no.5, pp.859–870. doi:10.12740/PP/65308.

37. Quigley E. M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017, vol.17, no.12, pp.94. doi:10.1007/s11910–017–0802–6.

38. Kanji S., Fonseka T. M., Marshe V. S. at al. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci. 2018, vol.268, no.1, pp. 3–15. doi:10.1007/s00406–017–0820-z.

39. Kang D. W., Adams J. B., Gregory A. C. at al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017, vol.5, no.1, pp.10. doi:10.1186/s40168–016–0225–7.

40. Dickerson F., Severance E., Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav Immun. 2017, no.62, pp.46–52. doi: 10.1016/j.bbi.2016.12.010.

41. Khan F., Oloketuyi S. F. A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. J Appl Microbiol. 2017, vol.122, no.2, pp. 306–320. doi:10.1111/jam.13327.

42. Sandhu K. V., Sherwin E., Schellekens H. at al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017, no.179, pp.223–244. doi:10.1016/j.trsl.2016.10.002.

43. Winek K., Dirnagl U., Meisel A. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics. 2016, vol.13, no.4, pp.762–774. doi:10.1007/s13311–016–0475-x.

44. Deans E. Microbiome and mental health in the modern environment. J Physiol Anthropol. 2016, vol.36, no.1, p.1. doi:10.1186/s40101–016–0101-y.

45. McVey Neufeld K. A., Luczynski P., Oriach S. C. at al. What’s bugging your teen? - The microbiota and adolescent mental health. Neurosci Biobehav Rev. 2016, no.70, pp.300–312. doi:10.1016/j.neubiorev.

46. Rogers G. B., Keating D. J., Young R. L. at al. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry. 2016, vol.21, no.6, pp.738–48. doi:10.1038/mp.2016.50.

47. Kelly J. R., Clarke G., Cryan J. F., Dinan T. G. Brain-gutmicrobiota axis: challenges for translation in psychiatry. Ann Epidemiol. 2016, vol.26, no.5, pp.366–72. doi:10.1016/j.annepidem.2016.02.008.

48. Gareau M. G. Cognitive Function and the Microbiome. Int Rev Neurobiol. 2016, no.131, pp.227–246. doi:10.1016/bs.irn.2016.08.001.

49. Rosenfeld C. S. Microbiome Disturbances and Autism Spectrum Disorders. Drug Metab Dispos. 2015, vol.43, no.10, pp.1557–71. doi:10.1124/dmd.115.063826.

50. De Angelis M., Francavilla R., Piccolo M., et al. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015, vol.6, no.3, pp. 207–13. doi:10.1080/19490976.2015.1035855.

51. Dash S., Clarke G., Berk M., Jacka F. N. The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry. 2015, vol.28, no.1, pp.1–6. doi:10.1097/YCO.0000000000000117.

52. Mayer E. A., Knight R., Mazmanian S. K., et al. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014, vol.34, no.46, pp.15490–6. doi:10.1523/JNEUROSCI.3299–14.2014.

53. Bhargava P., Mowry E. M. Gut microbiome and multiple sclerosis. Curr Neurol Neurosci Rep. 2014, vol.14, no.10, pp.492. doi:10.1007/s11910–014–0492–2.

54. Tillisch K., Labus J. S. Neuroimaging the microbiome-gut-brain axis. Adv Exp Med Biol. 2014, no.817, pp.405–16. doi:10.1007/978–1–4939–0897–4_18.

55. Borre Y. E., Moloney R. D., Clarke G., et al. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014, no.817, pp. 373–403. doi:10.1007/978–1–4939–0897–4_17.

56. Mikhaylova A. P., Chenchenko D. V., Shtrakhova A. V. Microbiotic Factor, Health and Stress-Induced Mental Disorders. Bulletin of the South Ural State University. Ser. Psychology. 2018, vol. 11, no. 1, pp. 75–87. (in Russ.). doi:10.14529/psy180107

57. Peterson L. W., Аrtis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014, vol. 14, no. 3, pp.141–153. doi:10.1038/nri3608

58. Tailford L. E., Crost E. H., Kavanaugh D., Juge N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 2015, no.6, p. 81. Doi:10.3389/fgene.2015.0008

59. Everard A., Belzer C., Geurts L.et al. Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013, vol.110, no. 22, pp. 9066–907

60. Burokas A., Arboleya S., Moloney R. D., et al. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol Psychiatry. 2017, vol.82, no.7, pp.472–487 doi:10.1016/j.biopsych.2016.12.031

61. Schroeder F. A., Lin C. L., Crusio W. E., et al. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry. 2007, vol.62, no.1, pp.55–64. doi:10.1016/j.biopsych.2006.06.036

62. Shultz S. R., Macfabe D. F., Martin S., et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long–Evans rat: further development of a rodent model of autism. Behav Brain Res. 2009, vol.200, no.1, pp.33–41. doi:10.1016/j.bbr.2008.12.023

63. Forsythe P., Sudo N., Dinan T., et al. Review Mood and gut feelings. J Brain Behav Immun. 2010, vol.24, no.1, pp. 9–16. doi:10.1016/j.bbi.2009.05.058

64. Wang L., Christophersen C. T., Sorich M. J., et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011, vol.77, no.18, pp.6718–6721 doi:10.1128/AEM.05212–11

65. Candela M., Rampelli S., Turroni S., et al. Unbalance of intestinal microbiota in atopic children. BMC Microbiol. 2012, no.12, p. 95. doi:10.1186/1471–2180–12–95

66. Cekanaviciute E., Yoo B. B., Runia T. F., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci USA. 2017, vol.114, no. 40, pp.10713–10718. doi:10.1073/pnas.1711235114

67. Derrien M., Van Baarlen P., Hooiveld G., et al. Modulation of mucosal immune response, tolerantce, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2011, no.2, p. 166. Doi:10.3389/fmicb.2011.00166

68. Lee Y. K., Mazmanian S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010, vol. 330, no. 6012, pp. 1768–1773. doi:10.1126/science.1195568

69. Shenderov B. A. Sovremennoe sostoyanie i perspektivy razvitiya koncepcii “Probiotiki, prebiotiki i sinbiotiki”. [Current state and development prospects of the concept “Probiotics, prebiotics and synbiotics”. Part 1]. Available at: https://disbak.ru/nauchnye-publikatsii/sovremennoe-sostoyanie-i-perspektivy-razvitiyakontseptsii-probiotiki-prebiotiki-i-sinbiotiki-chast-1.html (accessed 7 October 2021)

70. Kalyuzhin O. V. Probiotiki kak sovremennoe sredstvo ukrepleniya protivoinfekcionnoj immunnoj zashchity: mif ili real’nost’? [Probiotics as a modern means of strengthening anti-infectious immune defenses: myth or reality?]. Russkij medicinskij zhurnal – Russian medical journal. 2012, no. 28, pp.1395–1401.

71. Prihno N.I., Minushkin O. N., Ardatskaya M. D., et al. Izuchenie sostava korotkocepochechnyh zhirnyh kislot v fekaliyah i syvorotke perifericheskoj krovi u pacientov, stradayushchih zhelchekamennoj bolezn’yu, i znacheniya KZHK dlya izuchaemogo zabolevaniya [Study of the composition of short-chain fatty acids in feces and serum of peripheral blood in patients with cholelithiasis and the value of SCFA for the disease under study. Klinicheskaya medicina – Clinical medicine. 2001, no. 4, pp. 37–40

72. De Vrese M., Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 2008, vol. 111, pp. 1–66. doi:10.1007/10_2008_097

73. Kalyuzhin O. V. Vozmozhnosti ispol’zovaniya probiotikov dlya ukrepleniya protivoinfekcionnoj zashchity v svete immunogomeostaticheskoj roli mikrobioty [Possibilities of using probiotics to strengthen anti-infectious defense in the light of the immunogomeostatic role of microbiota]. Effektivnaya farmakoterapiya – Effective pharmacotherapy. 2013, no. 37, pp.12–25.

74. Gotteland M., Brunser O., Cruchet S. Systematic Review: Are Probiotics Useful in Controlling Gastric Colonization by Helicobacter pylori? Aliment Pharmacol Ther. 2006; vol.23, no.8, pp.1077–86. doi:10.1111/j.1365–2036.2006.02868.x

75. Johansson M.A., Sjogren Y. M., Persson J. O., et al. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS One. 2011. vol. 6, no.8, p. e23031. doi:10.1371/journal.pone.0023031

76. Zhihareva N. S. Opyt primeneniya kompleksnyh probioticheskih preparatov [Experience in using complex probiotic preparations]. Russkij medicinskij zhurnal–Russian medical journal. 2007, no. 21, pp. 1589–1599.

77. Shul’pekova YU.O. Primenenie probiotikov v klinicheskoj praktike [The use of probiotics in clinical practice]. Russkij medicinskij zhurnal – Russian medical journal. 2003, vol. 5, no. 1, p.28

78. E.A. Ushkalova Rol’ probiotikov v gastroenterologii [The Role of Probiotics in Gastroenterology]. Farmateka – Pharmateca. 2007, no. 6, p. 18–25

79. Shostakovich-Koreckaya L.R., Krivusha E. L., et al. Takticheskij podhod k korrekcii disbioza kishechnika u detej probioticheskimi preparatami. Opyt primeneniya preparata Lineks [A tactical approach to the correction of intestinal dysbiosis in children with probiotic drugs. Experience of using the drug Linex]. Ukrainskij medicinskij zhurnal – Ukrainian medical journal. 1999, no. 2, p.61–64

80. Belmer S. V. Antibiotikassociirovannyj disbakterioz kishechnika [Antibiotic Associated intestinal dysbiosis]. Russkij medicinskij zhurnal – Russian medical journal. 2004, no. 3, p.148

81. ZHihareva N.S., Havkin A. I. Terapiya antibiotikassociirovannogo disbakterioza [Therapy of antibioticassociated dysbiosis]. Russkij medicinskij zhurnal – Russian medical journal. 2006, vol. 14, no. 19, pp. 1386–9


Рецензия

Для цитирования:


Халтурина Е.О., Клюева Л.А., Бошьян Р.Е., Зембатов Г.М., Алимова А.М. Микробиом кишечника при стресс-индуцированных расстройствах: новый взгляд на синдром нейровоспаления. Экспериментальная и клиническая гастроэнтерология. 2021;(12):74-82. https://doi.org/10.31146/1682-8658-ecg-196-12-74-82

For citation:


Khalturina E.O., Klueva L.A., Boshiyan R.E., Zembatov G.M., Alimova A.M. Gut Microbiome in Stress-related Disorders: The New Approaches to Neuroinflamation syndrome. Experimental and Clinical Gastroenterology. 2021;(12):74-82. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-196-12-74-82

Просмотров: 343


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)