Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Современные аспекты питания при хронической сердечной недостаточности

https://doi.org/10.31146/1682-8658-ecg-196-12-62-73

Полный текст:

Аннотация

Питание занимает одно из важных мест в программах профилактики и немедикаментозной терапии ХСН и ассоциированных с ней заболеваний. При этом обоснованность диетических рекомендаций больным в отношении потребления соли, пищевых привычек и использования отдельных нутрицевтиков вызывает вопросы.

Целью настоящего обзора стало представление современных данных клинических и экспериментальных исследований, касающихся ограничения натрия, использования различных диет, нутрицевтиков, средств для коррекции дисбиоза кишечника при ХСН.

Материалы и методы: поиск статей проводили в базах данных eLIBRARY.RU и Medline по ключевым терминам и их сочетаниям: «сердечная недостаточность», «диета», «питание», «сердечная кахексия», «нутритивная поддержка», «нутрицевтик», «поваренная соль», «ограничение натрия», «биологически активная добавка», «пробиотик», «пребиотик», «энтеральное питание» на русском и английском языках. Отбирали статьи, содержащие результаты клинических и экспериментальных исследований, опубликованные с 1997 по 2021 гг.
Данные исследований свидетельствуют, что в основе патогенеза анорексии, мальнутриции и «метаболического ремоделирования» миокарда при ХСН лежат сложные механизмы, определяемые застойными явлениями в печени, нарушением проницаемости отечной кишечной стенки, дисбиозом и хроническим системным воспалением. Обоснованы рекомендации по потреблению натрия от 2 до 2,5 г/сут и поваренной соли от 5 до 6 г/сут пациентами с ХСН. Ограничение потребления жидкости актуально только при декомпенсации ХСН. Использование средиземноморской и антигипертензивной (DASH) диет большинством авторов признано перспективным направлением профилактики и лечения ХСН. Обосновано обогащение рациона питания больных ХСН ω-3 полиненасыщенными жирными кислотами, коэнзимом Q10, пищевыми волокнами, полифенолами и сапонинами. Показана польза энтерального питания и комплексного применения нутрицевтиков с целью замедления прогрессирования потери веса, уменьшения выраженности нейрогормональных и провоспалительных сдвигов. Перспективными направлениями исследований являются создание персонифицированных диет с учетом особенностей течения ХСН, статуса питания, состава кишечной микробиоты и ее метаболитов.

Об авторах

С. П. Саликова
ФГБВОУ ВО «Военно-медицинская академия имени С. М. Кирова» МО РФ
Россия

Саликова Светлана Петровна, д. м. н., доцент, доцент 2 кафедры терапии усовершенствования врачей
SPIN: 2012–8481

194044, Санкт-Петербург, улица Академика Лебедева, д. 6



В. Б. Гриневич
ФГБВОУ ВО «Военно-медицинская академия имени С. М. Кирова» МО РФ
Россия

Гриневич Владимир Борисович, д. м. н., профессор, заведующий 2 кафедрой терапии усовершенствования врачей
SPIN: 1178–0242
Scopus Author ID: 7005167197

194044, Санкт-Петербург, улица Академика Лебедева, д. 6



А. А. Власов
ФГБВОУ ВО «Военно-медицинская академия имени С. М. Кирова» МО РФ
Россия

Власов Андрей Александрович, к. м. н., соискатель 2 кафедры терапии усовершенствования врачей
SPIN: 2801–1228

194044, Санкт-Петербург, улица Академика Лебедева, д. 6



Список литературы

1. Orso F., Fabbri G., Maggioni A. P. Epidemiology of Heart Failure. Handb Exp Pharmacol. 2017;243:15–33. doi:10.1007/164_2016_74.

2. Pongiglione B., Torbica A., Gale C. P., et al. Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study. PLoS One. 2021;16(5): e0250931. doi:10.1371/journal.pone.0250931.

3. Liu L., Eisen H. J. Epidemiology of heart failure and scope of the problem. Cardiol Clin. 2014;32(1):1–8. doi:10.1016/j.ccl.2013.09.009.

4. Dharmarajan K., Rich M. W. Epidemiology, Pathophysiology, and Prognosis of Heart Failure in Older Adults. Heart Fail Clin. 2017;13(3):417–426. doi:10.1016/j.hfc.2017.02.001.

5. Billingsley H. E., Hummel S. L., Carbone S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog Cardiovasc Dis. 2020;63(5):538–551. doi:10.1016/j.pcad.2020.08.004.

6. Sciatti E., Lombardi C., Ravera A., et al. Nutritional Deficiency in Patients with Heart Failure. Nutrients. 2016;8(7):442 doi:10.3390/nu8070442.

7. Cvetinovic N., Loncar G., Isakovic A. M., et al. Micronutrient Depletion in Heart Failure: Common, Clinically Relevant and Treatable. Int J Mol Sci. 2019;20(22):5627. doi:10.3390/ijms20225627.

8. Rahman A., Jafry S., Jeejeebhoy K., et al. Malnutrition and cachexia in heart failure. JPEN J Parenter Enteral Nutr. 2016;40(4):475–486. doi:10.1177/0148607114566854;

9. Pasini E., Aquilani R., Corsetti G., Dioguardi F. S. Malnutrition and Gut Flora Dysbiosis: Specific Therapies for Emerging Comorbidities in Heart Failure. Biomed Res Int. 2015;2015:382585. doi:10.1155/2015/382585.

10. Tang W. H.W., Li D. Y., Hazen S. L. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137–154. doi:10.1038/s41569–018–0108–7.

11. Mollace V., Rosano G. M.C., Anker S. D., et al. Pathophysiological Basis for Nutraceutical Supplementation in Heart Failure: A Comprehensive Review. Nutrients. 2021;13(1):257. doi:10.3390/nu13010257.

12. Баллюзек М. Ф., Машкова М. В. Синдром кахексии: современное состояние проблемы и значение в клинической практике. Терапевтический архив. 2015;87(8):111–118. doi:10.17116/terarkh2015878111–118.

13. Yin J., Lu X., Qian Z., et al. New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure. Th eranostics. 2019;9(14):4019–4029. doi:10.7150/thno.33000.

14. Doukky R., Avery E., Mangla A., et al. Impact of Dietary Sodium Restriction on Heart Failure Outcomes. JACC Hear Fail. 2016;4(1):24–35. doi:10.1016/j.jchf.2015.08.007.

15. Khan M. S., Jones D. W., Butler J. Salt, No Salt, or Less Salt for Patients With Heart Failure? Am J Med. 2020;133(1):32–38. doi:10.1016/j.amjmed.2019.07.034.

16. Riegel B., Lee S., Hill J., et al. Patterns of adherence to diuretics, dietary sodium and fluid intake recommendations in adults with heart failure. Heart Lung. 2019;48:179–185. doi:10.1016/j.hrtlng.2018.12.008.

17. Patel Y., Joseph J. Sodium Intake and Heart Failure. Int J Mol Sci. 2020;21(24):9474. doi:10.3390/ijms21249474.

18. Machado d’Almeida K.S., Rabelo-Silva E.R., Souza G. C., et al. Aggressive fluid and sodium restriction in decompensated heart failure with preserved ejection fraction: Results from a randomized clinical trial. Nutrition. 2018;54:111–117. doi:10.1016/j.nut.2018.02.007.

19. Miller W. L., Borgeson D. D., Grantham J. A., et al. Dietary sodium modulation of aldosterone activation and renal function during the progression of experimental heart failure. Eur. J. Heart Fail. 2015;17:144–150. doi:10.1002/ejhf.212.

20. Mahtani K. R., Heneghan C., Onakpoya I., et al. Reduced Salt Intake for Heart Failure: A Systematic Review. JAMA Intern. Med. 2018;178:1693–1700. doi:10.1001/jamainternmed.2018.4673.

21. Vicent L., Alvarez-Garcia J., Gonzalez-Juanatey J.R., et al. Prognostic impact of hyponatremia and hypernatremia at admission and discharge in heart failure patients with preserved, mid-range, and reduced ejection fraction. Intern. Med. J. 2020;51(6):930–938. doi:10.1111/imj.14836.

22. Терещенко С. Н., Галявич А. С., Ускач Т. М. и др. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083. doi:10.15829/1560–4071–2020–4083.

23. Aggarwal M., Bozkurt B., Panjrath G., et al. American College of Cardiology’s Nutrition and Lifestyle Committee of the Prevention of Cardiovascular Disease Council. Lifestyle Modifications for Preventing and Treating Heart Failure. J Am Coll Cardiol. 2018;72(19):2391–2405. doi:10.1016/j.jacc.2018.08.2160.

24. Ishikawa Y., Sattler E. L.P. Nutrition as Treatment Modality in Heart Failure. Curr Atheroscler Rep. 2021;23(4):13. doi:10.1007/s11883–021–00908–5.

25. Abu-Sawwa R., Dunbar S. B., Quyyumi A. A., Sattler E. L.P. Nutrition intervention in heart failure: should consumption of the DASH eating pattern be recommended to improve outcomes? Heart Fail Rev. 2019;24(4):565–573. doi:10.1007/s10741–019–09781–6.

26. Appel L. J., Moore T. J., Obarzanek E., et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24. doi:10.1056/NEJM199704173361601.

27. Rifai L., Silver M. A. A Review of the DASH Diet as an Optimal Dietary Plan for Symptomatic Heart Failure. Prog Cardiovasc Dis. 2016;58(5):548–54. doi:10.1016/j.pcad.2015.11.001.

28. Filippou C. D., Tsioufis C. P., Thomopoulos C. G., et al. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr. 2020;11(5):1150–1160. doi:10.1093/advances/nmaa041.

29. Ravera A., Carubelli V., Sciatti E., et al. Nutrition and Cardiovascular Disease: Finding the Perfect Recipe for Cardiovascular Health. Nutrients. 2016;8(6):363. doi:10.3390/nu8060363.

30. Slivnick J., Lampert B. C. Hypertension and Heart Failure. Heart Fail Clin. 2019;15(4):531–541. doi:10.1016/j.hfc.2019.06.007.

31. Dos Reis Padilha G., Sanches Machado d’Almeida K., Ronchi Spillere S., Corrêa Souza G. Dietary Patterns in Secondary Prevention of Heart Failure: A Systematic Review. Nutrients. 2018;10(7):828. doi:10.3390/nu10070828.

32. Campos C. L., Wood A., Burke G. L., et al. Dietary Approaches to Stop Hypertension Diet Concordance and Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis. Am J Prev Med. 2019;56(6):819–826. doi:10.1016/j.amepre.2018.11.022.

33. Goyal P., Balkan L., Ringel J. B., et al. The Dietary Approaches to Stop Hypertension (DASH) Diet Pattern and Incident Heart Failure. J Card Fail. 2021;27(5):512–521. doi:10.1016/j.cardfail.2021.01.011.

34. Rifai L., Pisano C., Hayden J., et al. Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patients with heart failure. Proc (Bayl Univ Med Cent). 2015;28(2):151–6. doi:10.1080/08998280.2015.11929216.

35. Hummel S. L., Seymour E. M., Brook R. D., et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6(6):1165–71. doi:10.1161/CIRCHEARTFAILURE.113.000481.

36. Hummel S. L., Karmally W., Gillespie B. W., et al. Home-Delivered Meals Postdischarge From Heart Failure Hospitalization. Circ Heart Fail. 2018;11(8): e004886. doi:10.1161/CIRCHEARTFAILURE.117.004886.

37. Levitan E. B., Lewis C. E., Tinker L. F., et al. Mediterranean and DASH diet scores and mortality in women with heart failure: The Women’s Health Initiative. Circ Heart Fail. 2013;6(6):1116–23. doi:10.1161/CIRCHEARTFAILURE.113.000495.

38. Widmer R. J., Flammer A. J., Lerman L. O., Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128(3):229–38. doi:10.1016/j.amjmed.2014.10.014.

39. D’Alessandro A., De Pergola G. The Mediterranean Diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int J Food Sci Nutr. 2018;69(6):647–659. doi:10.1080/09637486.2017.1417978.

40. de Lorgeril M., Salen P., Martin J. L., et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85. doi:10.1161/01.cir.99.6.779.

41. Liyanage T., Ninomiya T., Wang A., et al. Effects of the Mediterranean Diet on Cardiovascular Outcomes - A Systematic Review and Meta-Analysis. PLoS One. 2016;11(8): e0159252. doi:10.1371/journal.pone.0159252.

42. Fitó M., Estruch R., Salas-Salvadó J., et al. PREDIMED Study Investigators. Effect of the Mediterranean diet on heart failure biomarkers: a randomized sample from the PREDIMED trial. Eur J Heart Fail. 2014;16(5):543–50. doi:10.1002/ejhf.61.

43. Lara K. M., Levitan E. B., Gutierrez O. M., et al. Dietary Patterns and Incident Heart Failure in U. S. Adults Without Known Coronary Disease. J Am Coll Cardiol. 2019;73(16):2036–2045. doi:10.1016/j.jacc.2019.01.067.

44. Rautiainen S., Levitan E. B., Mittleman M. A., Wolk A. Fruit and vegetable intake and rate of heart failure: a population-based prospective cohort of women. Eur J Heart Fail. 2015;17(1):20–6. doi:10.1002/ejhf.191.

45. Kerley C. P. A Review of Plant-based Diets to Prevent and Treat Heart Failure. Card Fail Rev. 2018;4(1):54–61. doi:10.15420/cfr.2018:1:1.

46. Kerley C. P. Nutritional Interventions in Heart Failure: Challenges and Opportunities. Curr Heart Fail Rep. 2018;15(3):131–140. doi:10.1007/s11897–018–0388–6.

47. Agha G., Loucks E. B., Tinker L. F., et al. Healthy lifestyle and decreasing risk of heart failure in women: the Women’s Health Initiative observational study. J Am Coll Cardiol. 2014;64(17):1777–85. doi:10.1016/j.jacc.2014.07.981.

48. Dehghan M., Mente A., Teo K. K., et al. Ongoing Telmisartan Alone and in Combination With Ramipril Global End Point Trial (ONTARGET)/Telmisartan Randomized Assessment Study in ACEI Intolerant Subjects With Cardiovascular Disease (TRANSCEND) Trial Investigators. Relationship between healthy diet and risk of cardiovascular disease among patients on drug therapies for secondary prevention: a prospective cohort study of 31 546 high-risk individuals from 40 countries. Circulation. 2012;126(23):2705–12. doi:10.1161/CIRCULATIONAHA.112.103234.

49. Gong F., Yao S., Wan J., Gan X. Chocolate Consumption and Risk of Heart Failure: A Meta-Analysis of Prospective Studies. Nutrients. 2017;9(4):402. doi:10.3390/nu9040402.

50. Bechthold A., Boeing H., Schwedhelm C., et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr. 2019;59(7):1071–1090. doi:10.1080/10408398.2017.1392288.

51. Khawaja O., Singh H., Luni F., et al. Egg Consumption and Incidence of Heart Failure: A Meta-Analysis of Prospective Cohort Studies. Front Nutr. 2017;4:10. doi:10.3389/fnut.2017.00010.

52. Mozaffarian D., Gottdiener J. S., Siscovick D. S. Intake of tuna or other broiled or baked fish versus fried fish and cardiac structure, function, and hemodynamics. Am J Cardiol. 2006;97(2):216–22. doi:10.1016/j.amjcard.2005.08.025.

53. Chrysohoou C., Panagiotakos D. B., Aggelopoulos P., et al. The Mediterranean diet contributes to the preservation of left ventricular systolic function and to the longterm favorable prognosis of patients who have had an acute coronary event. Am J Clin Nutr. 2010;92(1):47–54. doi:10.3945/ajcn.2009.28982.

54. Chrysohoou C., Kastorini C. M., Panagiotakos D., et al. Exclusive olive oil consumption is associated with lower likelihood of developing left ventricular systolic dysfunction in acute coronary syndrome patients: the hellenic heart failure study. Ann Nutr Metab. 2010;56(1):9–15. doi:10.1159/000261898.

55. Lennie T. A., Andreae C., Rayens M. K., et al. Micronutrient Deficiency Independently Predicts Time to Event in Patients With Heart Failure. J Am Heart Assoc. 2018;7(17): e007251. doi:10.1161/JAHA.117.007251.

56. Song E. K., Kang S. M. Micronutrient Deficiency Independently Predicts Adverse Health Outcomes in Patients With Heart Failure. J Cardiovasc Nurs. 2017 Jan/ Feb;32(1):47–53. doi:10.1097/JCN.0000000000000304.

57. Hopper I., Connell C., Briffa T., et al. Nutraceuticals in Patients With Heart Failure: A Systematic Review. J Card Fail. 2020;26(2):166–179. doi:10.1016/j.cardfail.2019.10.014.

58. Cicero A. F.G., Colletti A., von Haehling S., et al. International Lipid Expert Panel. Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev. 2020;33(1):155–179. doi:10.1017/S0954422420000049.

59. Witte K. K., Nikitin N. P., Parker A. C., et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J. 2005;26(21):2238–44). doi:10.1093/eurheartj/ehi442.

60. McKeag N.A., McKinley M.C., Harbinson M. T., et al. The effect of multiple micronutrient supplementation on left ventricular ejection fraction in patients with chronic stable heart failure: a randomized, placebo-controlled trial. JACC Heart Fail. 2014;2(3):308–17. doi:10.1016/j.jchf.2013.12.008.

61. Rabanal-Ruiz Y., Llanos-González E., Alcain F. J. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants (Basel). 2021;10(5):755. doi:10.3390/antiox10050755.

62. McCarty M. F. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci. 2021;22(7):3321. doi:10.3390/ijms22073321.

63. Djoussé L., Cook N. R., Kim E., et al. VITAL Research Group. Supplementation With Vitamin D and Omega-3 Fatty Acids and Incidence of Heart Failure Hospitalization: VITAL-Heart Failure. Circulation. 2020;141(9):784–786. doi:10.1161/CIRCULATIONAHA.119.044645.

64. Latic N., Erben R. G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int J Mol Sci. 2020;21(18):6483. doi:10.3390/ijms21186483.

65. Mistry R. H., Kohut A., Ford P. Correction of iron deficiency in hospitalized heart failure patients does not improve patient outcomes. Ann Hematol. 2021;100(3):661–666. doi:10.1007/s00277–020–04338–2.

66. Zusman O., Itzhaki Ben Zadok O., Gafter-Gvili A. Management of Iron Deficiency in Heart Failure. Acta Haematol. 2019;142(1):51–56. doi:10.1159/000496822.

67. Abdelhamid A. S., Brown T. J., Brainard J. S., et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7(7): CD003177. doi:10.1002/14651858.CD003177.pub3.

68. Sakamoto A., Saotome M., Iguchi K., Maekawa Y. Marine-Derived Omega-3 Polyunsaturated Fatty Acids and Heart Failure: Current Understanding for Basic to Clinical Relevance. Int J Mol Sci. 2019;20(16):4025. doi:10.3390/ijms20164025.

69. Barbarawi M., Lakshman H., Barbarawi O. Omega-3 supplementation and heart failure: A meta-analysis of 12 trials including 81,364 participants. Contemp Clin Trials. 2021;107:106458. doi:10.1016/j.cct.2021.106458.

70. Tavazzi L., Maggioni A. P., Marchioli R., et al. Gissi-HF Investigators. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1223–30. doi:10.1016/S0140–6736(08)61239–8.

71. Chrysohoou C., Metallinos G., Georgiopoulos G., et al. Short term omega-3 polyunsaturated fatty acid supplementation induces favorable changes in right ventricle function and diastolic filling pressure in patients with chronic heart failure; A randomized clinical trial. Vascul Pharmacol. 2016;79:43–50. doi:10.1016/j.vph.2016.01.005.

72. Oikonomou E., Vogiatzi G., Karlis D., et al. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin Nutr. 2019;38(3):1188–1197. doi:10.1016/j.clnu.2018.04.017.

73. O’Connell T.D., Block R. C., Huang S. P., Shearer G. C. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J Mol Cell Cardiol. 2017;103:74–92. doi:10.1016/j.yjmcc.2016.12.003.

74. He Y., Huang W., Zhang C., et al. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B. 2021;11(5):1098–1116. doi:10.1016/j.apsb.2020.10.007.

75. Keshavarz-Bahaghighat H., Darwesh A. M., Sosnowski D. K., Seubert J. M. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYPDerived Epoxylipids. Cells. 2020;9(7):1565. doi:10.3390/cells9071565.

76. Endo J., Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J Cardiol. 2016;67(1):22–7. doi:10.1016/j.jjcc.2015.08.002.

77. Jankowska E. A., Rozentryt P., Witkowska A., et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31(15):1872–80. doi:10.1093/eurheartj/ehq158.

78. Anker S. D., Kirwan B. A., van Veldhuisen D. J., et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur J Heart Fail. 2018;20(1):125–133. doi:10.1002/ejhf.823.

79. Ponikowski P., Kirwan B. A., Anker S. D., et al. Rationale and design of the AFFIRM-AHF trial: a randomised, double-blind, placebo-controlled trial comparing the effect of intravenous ferric carboxymaltose on hospitalisations and mortality in iron-deficient patients admitted for acute heart failure. Eur J Heart Fail. 2019;21(12):1651–1658. doi:10.1002/ejhf.1710.

80. Chopra V. K., Anker S. D. Anaemia, iron deficiency and heart failure in 2020: facts and numbers. ESC Heart Fail. 2020;7(5):2007–2011. doi:10.1002/ehf2.12797.

81. Mentz R. J., Ambrosy A. P., Ezekowitz J. A., et al. HEART-FID Trial Investigators. Randomized Placebo-Controlled Trial of Ferric Carboxymaltose in Heart Failure With Iron Deficiency: Rationale and Design. Circ Heart Fail. 2021;14(5): e008100. doi:10.1161/CIRCHEARTFAILURE.120.008100.

82. Ambrosy A. P., Lewis G. D., Malhotra R., et al. Identifying responders to oral iron supplementation in heart failure with a reduced ejection fraction: a posthoc analysis of the IRONOUT-HF trial. J Cardiovasc Med (Hagerstown). 2019;20(4):223–225. doi:10.2459/JCM.0000000000000736.

83. Lewis G. D., Malhotra R., Hernandez A. F., et al. NHLBI Heart Failure Clinical Research Network. Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Defi ciency: The IRONOUT HF Randomized Clinical Trial. JAMA. 2017;317(19):1958–1966. doi:10.1001/jama.2017.5427.

84. Mortensen S. A., Rosenfeldt F., Kumar A., et al. Q-SYMBIO Study Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2014;2(6):641–9. doi:10.1016/j.jchf.2014.06.008.

85. Lei L., Liu Y. Efficacy of coenzyme Q10 in patients with cardiac failure: a meta-analysis of clinical trials. BMC Cardiovasc Disord. 2017;17(1):196. doi:10.1186/s12872–017–0628–9.

86. Sobirin M. A., Herry Y., Sofia S. N., et al. Effects of coenzyme Q10 supplementation on diastolic function in patients with heart failure with preserved ejection fraction. Drug Discov Th er. 2019;13(1):38–46. doi:10.5582/ddt.2019.01004.

87. de Frutos F., Gea A., Hernandez-Estefania R., Rabago G. Prophylactic treatment with coenzyme Q10 in patients undergoing cardiac surgery: could an antioxidant reduce complications? A systematic review and meta-analysis. Interact Cardiovasc Th orac Surg. 2015;20(2):254–9. doi:10.1093/icvts/ivu334.

88. Ford E., Adams J., Graves N. Development of an economic model to assess the cost-effectiveness of hawthorn extract as an adjunct treatment for heart failure in Australia. BMJ Open. 2012;2(5): e001094. doi:10.1136/bmjopen-2012–001094.

89. Koch E., Malek F. A. Standardized extracts from hawthorn leaves and flowers in the treatment of cardiovascular disorders-preclinical and clinical studies. Planta Med. 2011;77(11):1123–8. doi:10.1055/s-0030–1270849.

90. Holubarsch C. J.F., Colucci W. S., Eha J. Benefi t-Risk Assessment of Crataegus Extract WS 1442: An EvidenceBased Review. Am J Cardiovasc Drugs. 2018;18(1):25–36. doi:10.1007/s40256–017–0249–9.

91. Halver J., Wenzel K., Sendker J., et al. Crataegus Extract WS®1442 Stimulates Cardiomyogenesis and Angiogenesis From Stem Cells: A Possible New Pharmacology for Hawthorn? Front Pharmacol. 2019;10:1357. doi:10.3389/fphar.2019.01357.

92. Ситкин С. И., Ткаченко Е. И., Вахитов Т. Я. Метаболический дисбиоз кишечника и его биомаркеры. Экспериментальная и клиническая гастроэнтерология. 2015;12(124):6–29.

93. Harikrishnan S. Diet, the Gut Microbiome and Heart Failure. Card Fail Rev. 2019;5(2):119–122. doi:10.15420/cfr.2018.39.2.

94. Jia Q., Li H., Zhou H., et al. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc Ther. 2019;2019:5164298. doi:10.1155/2019/5164298.

95. Mamic P., Chaikijurajai T., Tang W. H.W. Gut microbiome – A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol. 2021;152:105–117. doi:10.1016/j.yjmcc.2020.12.001.

96. Mayerhofer C. C.K., Kummen M., Holm K., et al. Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail. 2020;7(2):456–466. doi:10.1002/ehf2.12596.

97. Marques F. Z., Nelson E., Chu P. Y., et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135(10):964–977. doi:10.1161/CIRCULATIONAHA.116.024545.

98. Vlasov A. A., Shperling M. I., Terkin D. A., et al. Effect of Prebiotic Complex on Gut Microbiota and Endotoxemia in Female Rats with Modeled Heart Failure. Bull Exp Biol Med. 2020;168(4):435–438. doi:10.1007/s10517–020–04726–8.

99. Lam V., Su J., Koprowski S., et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–35. doi:10.1096/fj.11–197921.

100. Gan X. T., Ettinger G., Huang C. X., et al. Probiotic administration attenuates myocardial hypertrophy and heart failure aft er myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491–9. doi:10.1161/CIRCHEARTFAILURE.113.000978.

101. Lin P. P., Hsieh Y. M., Kuo W. W., et al. Probioticfermented purple sweet potato yogurt activates compensatory IGF-IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats. Int J Mol Med. 2013;32(6):1319–28. doi:10.3892/ijmm.2013.1524.

102. Costanza A. C., Moscavitch S. D., Faria Neto H. C., Mesquita E. T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–50. doi:10.1016/j.ijcard.2014.11.034.

103. Awoyemi A., Mayerhofer C., Felix A. S., et al. Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: Results from the randomized GutHeart trial. EBioMedicine. 2021;70:103511. doi:10.1016/j.ebiom.2021.103511.

104. Noordali H., Loudon B. L., Frenneaux M. P., Madhani M. Cardiac metabolism – A promising therapeutic target for heart failure. Pharmacol Ther. 2018 Feb;182:95–1144. doi:10.1016/j.pharmthera.2017.08.001

105. Heggermont W. A., Papageorgiou A. P., Heymans S., van Bilsen M. Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail. 2016;18(12):1420–1429. doi:10.1002/ejhf.678/

106. Wang H. N., Li J. L., Xu T., et al. Effects of Sirt3-autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Mol Med Rep. 2020;22(2):1342–1350. doi:10.3892/mmr.2020.11195

107. Cheng C. K., Luo J. Y., Lau C. W., et al. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol. 2020;177(6):1258–1277. doi:10.1111/bph.14801.

108. Dyck G. J.B., Raj P., Zieroth S., et al. The Effects of Resveratrol in Patients with Cardiovascular Disease and Heart Failure: A Narrative Review. Int J Mol Sci. 2019 Feb 19;20(4):904). doi:10.3390/ijms20040904

109. Santos C. N., Gomes A., Oudot C., et al. Pure Polyphenols Applications for Cardiac Health and Disease. Curr Pharm Des. 2018;24(19):2137–2156. doi:10.2174/1381612824666180608102344.

110. Bocchi L., Savi M., Naponelli V., et al. Long-Term Oral Administration of Theaphenon-E Improves Cardiomyocyte Mechanics and Calcium Dynamics by Affecting Phospholamban Phosphorylation and ATP Production. Cell Physiol Biochem. 2018;47(3):1230–1243). doi:10.1159/000490219.

111. Wang R., Wang M., Zhou J., et al. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol. 2021;11:570867. doi:10.3389/fphar.2020.570867.

112. Wang D., Lv L., Xu Y., et al. Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy. Biomed Pharmacother. 2021;136:111287. doi:10.1016/j.biopha.2021.111287.

113. Zang Y., Wan J., Zhang Z., et al. An updated role of astragaloside IV in heart failure. Biomed Pharmacother. 2020;126:110012. doi:10.1016/j.biopha.2020.110012.

114. Wen J., Zhang L., Liu H., et al. Salsolinol Attenuates Doxorubicin-Induced Chronic Heart Failure in Rats and Improves Mitochondrial Function in H9c2 Cardiomyocytes. Front Pharmacol. 2019;10:1135. doi:10.3389/fphar.2019.01135.

115. Pop C., Berce C., Ghibu S., et al. Effects of Lycium barbarum L. Polysaccharides on Inflammation and Oxidative Stress Markers in a Pressure Overload-Induced Heart Failure Rat Model. Molecules. 2020;25(3):466. doi:10.3390/molecules25030466.

116. Fan S., Zhang J., Xiao Q., et al. Cardioprotective effect of the polysaccharide from Ophiopogon japonicus on isoproterenol-induced myocardial ischemia in rats. Int J Biol Macromol. 2020;147:233–240. doi:10.1016/j.ijbiomac.2020.01.068.

117. Zhou H., Qian H. Relationship between enteral nutrition and serum levels of inflammatory factors and cardiac function in elderly patients with heart failure. Clin Interv Aging. 2018;13:397–401. doi:10.2147/CIA.S157507.

118. Hersberger L., Dietz A., Bürgler H., et al. Individualized Nutritional Support for Hospitalized Patients With Chronic Heart Failure. J Am Coll Cardiol. 2021;77(18):2307–2319. doi:10.1016/j.jacc.2021.03.232.

119. Saijo T., Yasumoto K., Ohashi M., et al. Association between early enteral nutrition and clinical outcome in patients with severe acute heart failure who require invasive mechanical ventilation. JPEN J Parenter Enteral Nutr. 2021. doi:10.1002/jpen.2118.


Рецензия

Для цитирования:


Саликова С.П., Гриневич В.Б., Власов А.А. Современные аспекты питания при хронической сердечной недостаточности. Экспериментальная и клиническая гастроэнтерология. 2021;(12):62-73. https://doi.org/10.31146/1682-8658-ecg-196-12-62-73

For citation:


Salikova S.P., Grinevich V.B., Vlasov A.A. The Modern Aspects of Nutrition during Chronic Heart Failure. Experimental and Clinical Gastroenterology. 2021;(12):62-73. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-196-12-62-73

Просмотров: 236


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)