Recovery strategies intestinal mucosal barrier
https://doi.org/10.31146/1682-8658-ecg-190-6-88-95
Abstract
The surface of the intestinal tract in healthy people is free of bacteria in all segments of the intestine. Thus, the attachment of bacteria to epithelial cells is a sign of infection. Unlike the mucous membrane, the intestinal lumen is never sterile. The reason for this is the polymicrobial nature of the gut microbiota. In the intestine, segments such as the stomach or small intestine, where bacteria are actively suppressed, the microbiota is random in appearance, composition, and concentration. However, the situation is completely different in the colon, where the growth of bacteria increases and their suppression is suspended. The concentration and diversity of bacteria in the colon reaches astronomical numbers. Some of these bacteria are required for the colon to function. Many of the local bacteria in the colon are potential pathogens: Bacteroides, Enterobacteriaceae, Enterococci, and Clostridium histolyticum. Control of pathogens in the colon is achieved through an impenetrable mucus layer. Inflammatory bowel disease is a polymicrobial infection characterized by persistent disruption of the mucosal barrier, subsequent migration of bacteria to the mucous membrane, and overgrowth of a complex bacterial biofilm on the surface of the epithelium, resulting in invasive and cytopathological effects. As long as the mucosal barrier function is impaired, the inflammatory process cannot successfully remove bacteria from the mucosal surface, and inflammation itself is detrimental. Due to the inflammatory reaction, the composition and structure of the fecal microbiota changes. Based on the biostructure of the fecal casts, active Crohn’s disease and ulcerative colitis can be distinguished from each other and from other gastrointestinal diseases. The relationship between the gut microbiome and various dermatological diseases (psoriasis, acne, rosacea, atopic dermatitis) is discussed.
About the Authors
A. A. KhryaninRussian Federation
Aleksey A. Khryanin, Doctor of Medical Sciences, Professor of the Department of Dermatovenereology and Cosmetology
630091, Russia, Siberian Federal district, Novosibirsk region, Novosibirsk, Krasny prospect, 52
M. F. Osipenko
Russian Federation
Marina F. Osipenko, MD, DSc, Professor, Head of the Department of Propedeutics of Internal Diseases
630091, Russia, Siberian Federal district, Novosibirsk region, Novosibirsk, Krasny prospect, 52
O. B. Nemchaninova
Russian Federation
Olga B. Nemchaninova, MD, DSc, Professor, Head of the Department of Dermatovenereology and Cosmetology
630091, Russia, Siberian Federal district, Novosibirsk region, Novosibirsk, Krasny prospect, 52
O. N. Pozdnyakova
Russian Federation
Olga N. Pozdnyakova, Doctor of Medical Sciences, Professor of the Department of Dermatovenereology and Cosmetology
630091, Russia, Siberian Federal district, Novosibirsk region, Novosibirsk, Krasny prospect, 52
T. B. Reshetnikova
Russian Federation
Tatyana B. Reshetnikova, Doctor of Medical Sciences, Professor of the Department of Dermatovenereology and Cosmetology
630091, Russia, Siberian Federal district, Novosibirsk region, Novosibirsk, Krasny prospect, 52
A. N. Evstropov
Russian Federation
Alexander N. Evstropov, Doctor of Medical Sciences, Professor of the Department of Microbiology, Virology and Immunology
630091, Russia, Siberian Federal district, Novosibirsk region, Novosibirsk, Krasny prospect, 52
References
1. Amann R, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995; 59:143.
2. Loy A, Maixner F, Wagner M, et al. ProbeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 2007; 35:800.
3. Swidsinski A, Göktas Ö, Bessler C, et al. Spatial organization of microbiotica in quiescent adenoiditis and tonsillitis. J Clin Path. 2007; 60:253.
4. Swidsinski A, Schlien P, Pernthaler A, et al. Bacterial biofi lm within diseased pancreatic and biliary tracts. Gut. 2005; 54:338.
5. Swidsinski A, Weber J, Loening- Baucke V, et al. Spatial organization and composition of the mucosal fl ora in patients with infl ammatory bowel disease. JCM. 2005; 43:3380.
6. Franks AH, Harmsen HJ, Raangs GC, et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group- specific 16S rRNA targeted oligonucleotide probes. Appl Environ Microbiol. 1998; 64:3336.
7. Harmsen HJ, Raangs GC, He, T, et al. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol. 2002; 68:2982.
8. Dethlefsen L, Huse S, Mitchell L, et al. Th e pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008 November; 6(11): e280.
9. Swidsinski A, Loening-Baucke V, Lochs, H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005; 8:1131.
10. Swidsinski A, Sydora BC, Doerffel Y, et al. Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm Bowel Dis. 2007; 13:963.
11. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 2002; 82:245.
12. Swidsinski A, Loening-Baucke V, Verstraelen H, et al. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology. 2008; 135:568.
13. Swidsinski A, Loening- Baucke V, Vaneechoutte M, et al. Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm Bowel Dis. 2008; 14:147.
14. Ellis SR, Nguyen M, Vaughn AR, et al. The skin and gut microbiome and its role in common dermatologic conditions. Microorganisms. 2019; 11;7(11):550. doi: 10.3390/microorganisms7110550
15. Kurokawa I., Danby F. W., Ju Q. et al. New developments in our understanding of acne pathogenesis and treatment. Exp. Dermatol. 2009; 18 (10):821–832.
16. Visser MJE, Kell DB, Pretorius E. Bacterial dysbiosis and translocation in psoriasis vulgaris. Front Cell Infect Microbiol. 2019; 4; 9:7. doi: 10.3389/fcimb.2019.00007. PMID: 30778377; PMCID: PMC6369634.
17. Scher J.U., Ubeda C., Artacho A. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015; 67 (1):128–139.
18. Yan D, Issa N, Afi fi L, et al. Th e role of the skin and gut microbiome in psoriatic disease. Curr Dermatol Rep. 2017;6(2):94–103. doi:10.1007/s13671–017–0178–5
19. Alesa DI, Alshamrani HM, Alzahrani YA, et al. Th e role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J Family Med Prim Care. 2019; 15;8(11):3496–3503. doi: 10.4103/jfmpc.jfmpc_709_19
20. Chen L, Li J, Zhu W, et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol. 2020; 15(11):589726. doi: 10.3389/fmicb.2020.589726
21. Hok BT. The microbiome in psoriasis and psoriatic arthritis: The skin perspective. The Journal of Rheumatology. 2018; 94: 30–31; DOI: https://doi.org/10.3899/jrheum.180133
22. Sikora M, Stec A, Chrabaszcz M, et al. Gut microbiome in psoriasis: an updated review. Pathogens. 2020; 12;9(6):463. doi: 10.3390/pathogens9060463
23. Volkova L.A., Khalif I. L., Kabanova I. N. Influence of intestinal dysbiosis on the course of acne vulgaris. Clinical medicine. 2001;79(6):39–41. (in Russ.)
24. Волкова Л. А., Халиф И. Л., Кабанова И. Н. Влияние дисбактериоза кишечника на течение вульгарных угрей // Клиническая медицина. 2001. Т. 79. № 6. С. 39–41.
25. Vasilyeva E.S., Savostyanova O. V. Th e state of intestinal microecology in patients with acne. Russian medical journal. 2007;15(19):1398–1399. (in Russ.)
26. Yan HM, Zhao HJ, Guo DY, et al. Gut microbiota alterations in moderate to severe acne vulgaris patients. J Dermatol. 2018; 45(10):1166–1171. doi: 10.1111/1346–8138.14586
27. Deng Y, Wang H, Zhou J, et al. Patients with acne vulgaris have a distinct gut microbiota in comparison with healthy controls. Acta Derm Venereol. 2018; 29;98(8):783–790. doi: 10.2340/00015555–2968
28. Dréno B, Dagnelie MA, Khammari A, Corvec S. Th e skin microbiome: a new actor in inflammatory acne. Am J Clin Dermatol. 2020; 21(Suppl 1):18–24. doi: 10.1007/s40257–020–00531–1. PMID: 32910436
29. Picardo M, Ottaviani M. Skin microbiome and skin disease: the example of rosacea. J Clin Gastroenterol. 2014; 48 Suppl1: S85–6. doi: 10.1097/MCG.0000000000000241
30. Searle T, Ali FR, Carolides S, Al-Niaimi F. Rosacea and the gastrointestinal system. Australas J Dermatol. 2020 Nov;61(4):307–311. doi: 10.1111/ajd.13401
31. Tutka K, Żychowska M, Reich A. Diversity and composition of the skin, blood and gut microbiome in rosacea – a systematic review of the literature. Microorganisms. 2020; 8(11):1756. doi: 10.3390/microorganisms8111756
32. Swidsinski A, Ung V, Sydora BC, et al. Bacterial overgrowth and inflammation of small intestine aft er carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm Bowel Dis. 2009; 15:359.
33. Khryanin AA. Biofilms of microorganisms: modern concepts. Antibiotics and chemotherapy, 2020, V. 65, No. 5–6, pp. 37–44.
Review
For citations:
Khryanin A.A., Osipenko M.F., Nemchaninova O.B., Pozdnyakova O.N., Reshetnikova T.B., Evstropov A.N. Recovery strategies intestinal mucosal barrier. Experimental and Clinical Gastroenterology. 2021;1(6):88-95. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-190-6-88-95