Preview

Экспериментальная и клиническая гастроэнтерология

Расширенный поиск

Внеклеточные везикулы (экзосомы) и их роль в биологии бактерий и реализации их патогенного потенциала

https://doi.org/10.31146/1682-8658-ecg-179-7-118-130

Полный текст:

Аннотация

Продукция экзосомных микровезикулярных структур (ЭМВС) широко распространена у грамотрицательных и грамположительных бактерий. Эти внеклеточные везикулы присутствуют во многих, если не во всех биологических жидкостях и тканях хозяина. Они могут передавать множество различных низкомолекулярных эффекторных и сигнальных молекул (белки, пептиды, коферменты, липиды, метаболиты, ДНК, РНК, токсины и др.) в бактериальные клетки и клетки-хозяина, у которых они могут выполнять важные функции и биохимические реакции, включая межклеточную коммуникацию и регуляцию иммунных ответов. Вовлечение бактериальных ЭМВС в различные биологические функции прокариотических и эукариотических клеток делает их ключевыми игроками, как в физиологических процессах, так и в патологических состояниях. Способность ЭМВС выступать в качестве носителей различных регуляторных и сигнальных молекул открывает возможность их использования в качестве новых биомаркеров заболеваний и в качестве перспективных лекарственных агентов, в том числе, вакцинных препаратов. В представленном обзоре описываются механизмы, с помощью которых бактериальные ЭМВС, могут поддерживать гомеостаз и здоровье хозяина, а также индуцировать у последнего патологические процессы или иммунную толерантность; обсуждается возможность участия этих ЭМВС в инновационных нанобиотехнологиях.

Об авторах

Б. А. Шендеров
Московский государственный университет технологий и управления им. К.Г. Разумовского (Первый казачий университет)
Россия

Шендеров Борис Аркадьевич - доктор медицинских наук, профессор, главный научный сотрудник. ПНИЛ «Конструирование и внедрение продуктов и рационов персонифицированного питания».
109004, Земляной вал, д. 73, Москва.



А. В. Синица
ООО «Крафт»
Россия

Синица Александр Владимирович - кандидат технических наук.
Санкт-Петербург.



М. М. Захарченко
ООО «Крафт»
Россия

Захарченко Михаил Михайлович - кандидат медицинских наук, Руководитель отдела развития.
Санкт-Петербург.



Е. И. Ткаченко
Военно-медицинская академия им. С.М. Кирова
Россия

Ткаченко Евгений Иванович - доктор медицинских наук, профессор, профессор 2-я кафедра (терапии усовершенствования врачей).
Санкт-Петербург.



Список литературы

1. Ugolev A. M. Teoriya adekvatnogo potaniya iTrofologiya L. Nauka, 1991. 372 P.

2. Schorey J.S., Harding C. V. Extracellular vesicles and infectious diseases: new complexity to and old story. J Clin Invest 2016; 126(4): 1181-1189. doi: 10.1172/JCI81132

3. Shenderov B.A., Sinitsa A. V., Zakharchenko M.M, Lang C. METABIOTICS. Present state, challenges and perspectives. 2020. Springer Nature Switzeland AG 123 P. https://doi.org/10.1007/978-3-030-34167-1

4. Oleskin A.V., Shenderov B. A. Microbial communication and microbiota-host interactivity. Neurophysiological, biotechnological, and biopolitical implications. New York: Nova Science Publications.2020. 371 p

5. Macia L., Nanan R., Hosseini-Beheshti Е., Grau G. Е. Host-and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. Int. J. Mol. Sci. 2020, 21, 107; doi:10.3390/ijms21010107

6. Stentz R., Carvalho A. L., Jones Е. J., Carding S. R. Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body. Biochemical Society Transactions 2018; 46: 1021-1027. https://doi.org/10.1042/BST20180114

7. Kaparakis-Liaskos M.; Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 2015; 15: 375-387. https://doi.org/10.1038/nri3837

8. Orench-Rivera N., Kuehn M. J. Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol 2016; 18: 1525-1536. doi: 10.1111/cmi.12676

9. Schwechheimer C., Kuehn M. J. Outer-membrane vesicles from gramnegative bacteria: biogenesis and functions. Nat Rev Microbiol 2015; 13: 605-619. doi: 10.1038/nrmicro3525

10. Guerrero-Mandujano A., Hernandez-Cortez C., Antonio Ibarra J., Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic. 2017; 18: 425-432. doi: 10.1111/tra.12488

11. O'Donoghue E. J., Krachler A. M. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol 2016; 18: 1508-1517. doi: 10.1111/cmi.12655

12. Bitto N., Kaparakis-Liaskos M. The therapeutic benefit of bacterial membrane vesicles. Int J Mol Sci 2017; 18:1287. doi: 10.3390/ijms18061287.

13. Canas M-A., Fabrega M-J., Gimenez R., Badia J., Baldomd L. Outer Membrane Vesicles From Probiotic and Commensal Escherichia coli Activate NOD1-Mediated Immune Responses in Intestinal Epithelial Cells. Front Microbiol 2018; 9: 498. doi: 10.3389/fmicb.2018.00498

14. Rueter C., Bielaszewska M. Secretion and Delivery of Intestinal Pathogenic Escherichia coli Virulence Factors via Outer Membrane Vesicles. Front Cell Infect Microbiol 2020; 10: 91. doi: 10.3389/fcimb.2020.00091

15. Uddin M.J., Dawan J., Jeon G., Yu T., He X., Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020;8(5): 670. doi: 10.3390/microorganisms8050670.

16. Skotland T., Sandvig K., Llorente A. Lipids in exosomes: current knowledge and the way forward. Progress in Lipid Research 2017; 66: 30-41. doi:10.1016/l.plipres.2017.03.001

17. Yanez-Mo M., Siljander P R-M., Andreu Z., Zavec A. B., Borras F. E., Buzas E. I. et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066. http://dx.doi.org/10.3402/jev.v4.27066

18. Samuel M., Bleackley M., Anderson M., Mathivanan S. Extracellular vesicles including exosomes in cross kingdom regulation: a viewpoint from plant-fungal interactions. Front Plant Sci 2015; 6:766. doi:10.3389/fpls.2015.00766

19. Jan A. T. Outer Membrane Vesicles (OMVs) of Gramnegative Bacteria: A Perspective Update. Front Microbiol 2017; 8: 1053. doi: 10.3389/fmicb.2017.01053

20. Sutaria D.S., Jiang J., Elgamal O. A., Pomeroy S.M, Badawi M., Zhu X., Pavlovicz R., et al. Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimic delivery. J Extracell Vesicles 2017; 6:1333882. https://doi.org/10.1080/20013078.2017.1333882

21. Woith E., Fuhrmann G., Melzig M. F. Extracellular Vesicles - Connecting Kingdoms. Int J Mol Sci 2019; 205695. doi: 10.3390/ijms20225695

22. Hessvik N.P., Llorente A. Current knowledge on exo-some biogenesis and release. Cell Mol Life Sci 2018; 75: 193-208. doi: 10.1007/s00018-017-2595-9

23. Contreras-Naranjo J.C., Wu H-J., Ugaz V. M. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip 2017; 17(21): 3558-3577. doi:10.1039/c7lc00592j.

24. Teng Y., Ren Y., Sayed M., Hu X., Lei C., Kumar A., Hutchins E. et al. Plant-derived exosomal microRNAs shape the gut mictrobiota. Cell Hosy& Microbe 2018; 24: 1-16. doi:10.1016/j.chom.2018.10.001

25. Hartjes T.A., Mytnyk S., Jenster G.W, van Steijn V., van Royen M. E. Extracellular Vesicle Quantification and Characterization: Common Methods and Approaches. Bioengineering 2019; 6, 7. doi: 10.3390/bioengineering6010007

26. Tian J., Casella G., Zhang Y., Rostami A., Li X. Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases. Int J Biol Sci 2020; 16(4): 620-632. doi: 10.7150/ijbs.39629.

27. Record M., Silvente-Poirot M., Wakelam M. J. O. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lip Res 2018; 5913161323. doi: 10.1194/jlr.E086173

28. Chen C., Kawamoto J., Kawai S., Tame A., Kato C., Imai T,, Ku ri hara T. Isolation of a Novel Bacterial Strain Capable of Producing Abundant Extracellular Membrane Vesicles Carrying a Single Major Cargo Protein and Analysis of Its Transport Mechanism. Front Microbiol 2020; 10: 3001. doi: 10.3389/fmicb.2019.03001

29. Koritzinsky E.H., Street J. M., Star R. A., Yuen P. S. T. Quantification of Exosomes. J Cell Physiol 2017; 232(7): 1587-1590. doi: 10.1002/jcp.25387

30. Ibsen S.D., Wright J., Lewis J. M., Kim S., Ko S-Y., et al. Rapid Isolation and Detection of Exosomes and Associated Biomarkers from Plasma. ACS Nano 2017; 11 (7): 6641-6651. https://doi.org/10.1021/acsnano.7b00549

31. Vidal M. Exosomes: Revisiting their role as “garbage bags”. Traffic, 2019; 20: 815-828. doi: 10.1111/tra.12687

32. Palviainen M.; Saari H.; Karkkainen O.; Pekkinen J.; Auriola S.; Yliperttula M.; Puhka M.; Hanhineva K., Siljander, P. R. Metabolic signature of extracellular vesicles depends on the cell culture conditions. J Extracell Vesicles 2019; 8: 1596669. doi:10.1080/20013078.2019.1596669

33. Settembre C., Frald A.i, Medina D. L., Ballabio A. Signals for the lysosome: a control center for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14(5): 283-296. doi:10.1038/nrm3565.

34. Urbanelli L., Buratta S., Sagini K., Ferrara G., Lanni M., Emiliani C. Exosome based strategies for diagnosis and therapy. Recent Pat CNS Drug Discov, 2015; 10: 10-27. doi: 10.2174/1574889810666150702124059

35. Kuipers, M.E., Hokke C. H., Smits H. H., Nolte-‘t Hoen E. N. M. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: An overview. Front Microbiol 2018; 9: 2182. doi:10.3389/fmicb.2018.02182

36. Shin M-R., Whon T. W., Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology 2015; 33(9): 496-503. http://dx.doi.org/10.1016/j.tibtech.2015.06.011

37. Sizar O., Unakai C. G. Gram Positive Bacteria. 2019. https: www.ncbi.nlm.nih.gov/books/NBK470553/. PMID:29361915

38. Brown L., Wolf J. M., Prados-Rosales, R., Casadevall, A. Through the wall: Extracellular vesicles in Grampositive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015; 13: 620-630. doi: 10.1038/nrmicro3480

39. Liu Y., Defourny K. A.Y., Smid E.J, Abee T. Gram-Positive Bacterial Extracellular Vesicles and Their Impact on Health and Disease. Front Microbiol 2018; 9:1502. doi: 10.3389/fmicb.2018.01502

40. Dauros Singorenko P., Chang V., Whitcombe A., Si-mo nov D., Hong J., Phillips A., Swift S., Blenkiron C. Isolation of membrane vesicles from prokaryotes: A technical and biological comparison reveals heterogeneity. J. Extracell. Vesicles 2017; 6: 1324731. http://doi.org/10.1080/20013078.2017.1324731

41. Malloci M., Perdomo L., Veerasamy M., An dri an tsi-to haina R., Simard G., Martinez M. C. Extracellular vesicles: Mechanisms in human health and disease. Antioxid Redox Signal 2019; 30: 813-856. doi:10.1089/ars.2017.7265

42. Clarke A. J. The “hole” story of predatory outer-membrane vesicles. Can J Microbiol 2018; 64(9): 589-599. doi: 10.1139/cjm-2017-0466

43. Toyofuku M., Nomura N., Eberi L. Types and origins of bacterial membrane vesicles. Nature Rev Microbiol 2019; 17: 13-24. http://doi.org/10.1038/S41579-018-0112-2

44. Devos S., Van Putte W., Vitse J., Van Driessche G., Stre-mersch S., Van Den Broek W., et al. Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas maltophilia in response to ciprofloxacin stress. Environ. Microbiol. 2017; 19: 3930-3937. doi: 10.1111/1462-2920.13793

45. Wang X., Zhang M., Flores S. R.L., Woloshun R. R., Yang C., Yin L., Xiang P., Xu X., Garrick M. D., Vidyasagar S., et al. Oral gavage of ginger nanoparticle-derived lipid vectors carrying Dmt1 siRNA blunts iron loading in murine hereditary hemochromatosis. Mol Ther 2019; 27: 493-506. doi:10.1016/j.ymth.2019.01.003

46. Schulz, E., Goes A., Garcia R., Panter, F., Koch M., Muller R., Fuhrmann K., Fuhrmann G. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J Control Release 2018; 290: 46-55. https://doi.org/10.1016/j.conrel.2018.09.030

47. Cecil J.D., Sirisaengtaksin N., O'Brien-Simpson N.M., Krachler A. M. Outer Membrane Vesicle - Host Cell Interactions. Microbiol Spectr 2019; 7(1). doi:10.1128/microbiolspec.PSIB-0001-2018.

48. Lee H. J. Microbe-host communication by small RNAs in extracellular vesicles: Vehicles for transkingdom RNA transportation. Int J Mol Sci 2019; 20(6):1487. doi: 10.3390/ijms20061487

49. Deo P., Chow S. H., Hay I. D., Kleifeld O., Costin A., Elgass K. D., Jiang J. H., Ramm, G., Gabriel K., Dougan, G., et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog 2018; 14: e1006945. https://doi.org/10.1371/journal.ppat.1006945

50. Svennerholm K., Park K. S., Wikstrom J., Lasser C., Crescitelli R., Shelke G. V., et al. Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction. Sci Rep 2017; 7:17434. doi: 10.1038/s41598-017-16363-9

51. Codemo M., Muschiol S., Iovino F., Nannapaneni P., Plant L., Wai S. N., Henriques-Normark B. Immunomodulatory efects of pneumococcal extracellular vesicles on cellular and humoral host defenses. MBio 2018; 9: e00559-18. https://doi.org/10/1128/mBio.00559

52. Morshed A., Karawdeniya B. I., Nuwan Y. M., Ban dara D. Y., Kim M. J., Dutta P. Mechanical characterization of vesicles and cells: A review. Electrophoresis, 2020; 41(7-8): 449-470. doi: 10.1002/elps.201900362

53. Watanabe K. Bacterial membrane vesicles (MVs): novel tools as nature- and nanocarriers for immunogenic antigen, enzyme support, and drug delivery. Appl Microbiol Biotechnol 2016; 100: 9837-9843. doi:10.1007/s00253-016-7916-7

54. Leca M., Bornet C., Montana M., Curti C, Vanelle P. Meningococcal vaccines: current state and future outlook. Pathol Biol 2015; 63: 144-151. https://doi.org/10.1016/j.patbio.2015.04.003

55. Petousis-Harris H., Paynter J., Morgan J., Saxton P., McArdle B., Goodyear-Smith F., et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 2017; 390: 1603-1610. doi: 10.1016/S0140-6736(17)31449-6

56. Choi S. J., Kim M.-H., Jeon J., Kim O. Y., Choi Y., Seo J., et al. Active immunization with extracellular vesicles derived from Staphylococcus aureus effectively protects against staphylococcal lung infections, mainly via Th1 cellmediated immunity. PLoS One 2015; 10: e0136021. doi: 10.1371/journal.pone.0136021

57. Hays M. P., Houben D., Yang Y., Luirink J., Hardwidge P. R. Immunization with Skp delivered on outer membrane vesicles protects mice against enterotoxigenic Escherichia coli challenge. Front Cell Infect Microbiol 2018; 8:132. doi: 10.3389/fcimb.2018.00132

58. Gujrati V., Kim S., Kim S. H., Min J. J., Choy H. E., Kim S. C., Jon S. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 2014; 8: 1525-1537. doi: 10.1021/nn405724x.

59. Fuhrmann G., Neuer A. L., Herrmann I. K. Extracellular vesicles - a promising avenue for the detection and treatment of infectious diseases? Eur J Pharm Biopharm 2017; 118: 56-61. doi: 10.1016/j.ejpb.2017.04.005.

60. Esoda C., Kuehn M. J. Pseudomonas aeruginosa Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity. mBio 2019;10(6): e02548-19. doi: 10.1128/mBio.02548-19.


Для цитирования:


Шендеров Б.А., Синица А.В., Захарченко М.М., Ткаченко Е.И. Внеклеточные везикулы (экзосомы) и их роль в биологии бактерий и реализации их патогенного потенциала. Экспериментальная и клиническая гастроэнтерология. 2020;(7):118-130. https://doi.org/10.31146/1682-8658-ecg-179-7-118-130

For citation:


Shenderov B.A., Sinitsa A.B., Zakharchenko M.M., Tkachenko E.I. Extracellular vesicles (exosomes) in prokaryotic organisms: role in their biology and realization of their pathogen potential. Experimental and Clinical Gastroenterology. 2020;(7):118-130. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-179-7-118-130

Просмотров: 41


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-8658 (Print)