

экспериментальная гастроэнтерология

experimental gastroenterology

ЛАБОРАТОРНО-ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ КОМПЛЕКСНОГО ПРОБИОТИЧЕСКОГО ПРЕПАРАТА «БИФИЛАКТ-БИЛС», КАПСУЛЫ

Несчисляев В. А., Столбова М. Г., Мокин П. А., Орлова Е. В., Ершов А. Е. НПО «Микроген», Москва, Пермь, Россия

LABORATORY AND EXPERIMENTAL STUDY OF THE COMPLEX PROBIOTIC PREPARATION "BIFILACT-BILS" IN CAPSULATED FORM

Neschislyaev V. A., Stolbova M.G, Mokin P. A., Orlova E. V., Ershov A. E. Federal State Unitary Company "Microgen", Moscow, Perm, Russian Federation

Столбова Мария ГеоргиевнаStolbova Mary G
maryscu@mail.ru

Несчисляев В. А., Филиал ФГУП «НПО «Микроген» Минздрава России «Пермское НПО «Биомед», начальник отделения препаратов бактериотерапии, ведущий научный сотрудник.

Столбова М. Г., Филиал ФГУП «НПО «Микроген» Минздрава России «Пермское НПО «Биомед», микробиолог отделения препаратов бактериотерапии.

Мокин П. А., Филиал ФГУП «НПО «Микроген» Минздрава России «Пермское НПО «Биомед», технолог участка готовых лекарственных форм отделения препаратов бактериотерапии.

Орлова Е.В., Директор Филиала ФГУП «НПО «Микроген» Минздрава России в г. Пермь «Пермское НПО «Биомед» **Ершов А.Е.**, Начальник Управления регистрации и медицинских исследований НПО «Микроген».

Резюме

В Пермском НПО «Биомед» разработан состав и технология получения комплексного пробиотика в твердых желатиновых капсулах, содержащего штаммы: Lactobacillus plantarum 8P-A3, L. acidophilus $K_3 \coprod_{24}$ и Bifidobacterium bifidum 1. Лабораторно-экспериментальное (доклиническое) изучение этого препарата включало исследование антагонистической активности, «острой» и «хронической» токсичности, влияния препарата на гистологические и гематологические показатели лабораторных животных. Результаты проведенных исследований свидетельствуют, что такой комплексный пробиотик по ингибирующей активности в отношении условно-патогенной микрофлоры превосходит монопрепараты в тесте отсроченного антагонизма и не оказывает токсического воздействия на организм животных.

Ключевые слова: комплексный пробиотический препарат, антагонистическая активность, острая и хроническая токсичность

Экспериментальная и клиническая гастроэнтерология 2016; 127 (3): 20-23

Summary

The composition and technology of complex probiotic in hard gelatin capsules was developed in Perm Branch «Biomed» of «Microgen» State Company. The preparation contains three production strains: Lactobacillus plantarum 8P-A3, L. acidophilus K3Ш24 and Bifidobacterium bifidum 1. Laboratory and experimental (preclinical) study of the probiotic included investigation of the antagonistic activity, "acute" and "chronic" toxicity, the effect of the preparation on histology and hematology of laboratory animals. The results of these studies suggested of the probiotic had high inhibitory activity against pathogenic microflora when compared with probiotic monopreparations and had no toxic effects on laboratory animals.

Keywords: complex probiotic preparation, antagonist activity, acute and chronic toxicity.

Eksperimental'naya i Klinicheskaya Gastroenterologiya 2016; 127 (3): 20–23

Введение

В Пермском НПО «Биомед» разработана технология получения комплексного пробиотического препарата «Бифилакт-БИЛС» в твердых желатиновых капсулах, бактериальная композиция которого содержит три производственных штамма: Lactobacillus plantarum 8P-A3, L. acidophilus $K_3 III_{24}$ и Bifidobacterium bifidum 1, сочетание которых

обеспечивает высокую биологическую активность пробиотика.

Цель: проведение лабораторно-экспериментального (доклинического) изучения капсульной формы комплексного пробиотического препарата «Бифилакт-БИЛС» для перорального ввеления.

Материал и методы исследования

В работе использовали порошок пробиотика «Бифилакт-БИЛС», предназначенный для наполнения твердых желатиновых капсул.

Изучение комплексного пробиотика «Бифилакт-БИЛС» включало исследование антагонистической активности, «острой» и «хронической» токсичности, влияния препарата на гистологические и гематологические показатели лабораторных животных.

В тесте отсроченного антагонизма испытывали препараты: Бифилакт-БИЛС, Лактобактерин сухой, Бифидумбактерин сухой, Ацилакт сухой. Активность препаратов по отношению к индикаторным культурам изучали методом перпендикулярных штрихов [1]. В качестве тест-культур использовали штаммы: Staphylococcus aureus 209P, Escherichia coli 157, Shigella flexneri 337 и 170, Sh. sonnei 5063, Proteus mirabilis 56/10 и H-237 и Pr. vulgaris 177. Для культивирования клеток применяли плотные питательные среды МРС-5 и Блаурокка, в анаэробных (анаэростат с использованием газогенерирующих пакетов «ВD ВВL^{ТМ}», США) условиях при температуре 37 °C в течение 96 часов. Индикаторные культуры, предварительно выращенные на мясо-пептонном агаре в течение 24 часов в аэробных условиях, смывали 0,9% раствором натрия хлорида и перед посевом доводили их оптическую плотность до 5 единиц по ОСО 42-28-86-86.

Токсичность в «остром» опыте при однократном введении экспериментального препарата и в «хроническом» опыте при многократном введении препарата определялась на двух видах животных — белых мышах (б.м.) и белых крысах (б.к.).

Белые мыши получены из отделения воспроизводства лабораторных животных Пермского НПО «Биомед». Белые крысы поставлялись из питомника ГУ НЦБМТ РАМН филиал «Андреевка», г. Москва. Все животные содержались на стандартном рационе.

Дозы препарата рассчитывали на массу тела животных по методике, изложенной в руководстве по экспериментальному (доклиническому) изучению новых фармакологических веществ [1, 2, 3].

Для изучения острой токсичности белым мышам (массой 20 г) вводили испытуемый препарат по 0,5 мл перорально однократно в двух дозах: 9,3 мг/б.м. (10 доз), 93 мг/б.м. (100 доз). Белым крысам (массой 170 г) вводили испытуемый препарат по 1,0 мл перорально однократно в двух дозах: 35 мг/б.к. (10 доз), 350 мг/б.к. (100 доз). Животным контрольной группы вводили перорально аналогичное количество 0,9% раствора натрия хлорида. Для изучения хронической токсичности белым мышам вводили испытуемый препарат ежедневно в течение 10 суток по 0,5 мл перорально в двух дозах: 9,3 мг/б.м. (10 доз) и 93 мг/б.м. (100 доз). Белым крысам вводили испытуемый препарат по 1,0 мл перорально ежедневно в течение 10 дней в двух дозах: 35 мг/б.к. (10 доз), 350 мг/б.к. (100 доз). Животным контрольной группы ежедневно в течение 10 дней вводили перорально аналогичное количество 0,9% раствора натрия хлорида.

Наблюдение за животными для выявления отклонений в состоянии здоровья и смертности проводили один раз в день непосредственно перед введением препарата. Клинический осмотр каждого животного проводился один раз до начала введения препарата и ежедневно в последующем. Отмечали проявление и выраженность следующих признаков: симптомы интоксикации, нарушение поведения, поза, походка, внешний вид (истощение, ожирение, состояние шерстяного покрова).

Изучение влияния пробиотика на внутренние органы проводили при тестировании токсичности препарата на крысах в «остром» и «хроническом» опытах для дозы 350 мг/б.к. (100 доз) через 24 ч и 7 суток после окончания введения препарата. Контролем послужили животные, которым вводили 0,9% раствор натрия хлорида. У животных, подвергнутых эвтаначии, взвешивали и фиксировали следующие органы: тимус, сердце, легкие, печень, селезенку, почки. Гистологические исследования проводили на базе кафедры патологической анатомии ПГМА им. ак. Е.А. Вагнера.

Определение влияния препарата на гематологические показатели проводили при изучении токсичности на крысах в «остром» и «хроническом» опытах. Забор крови (1–2 мл) производили непосредственно перед забоем животных. В цельной крови определяли содержание гемоглобина, общее число эритроцитов и лейкоцитов по общепринятым методикам. В мазках крови, окрашенных по Романовскому-Гимзе, подсчитывали содержание различных популяций лейкоцитов путем микроскопии под масляной иммерсией с помощью светового микроскопа «Місгоѕ» (окуляр ×10, иммерсионный объектив ×100). Для каждой популяции лейкоцитов вычисляли относительные и абсолютные величины.

Результаты исследований обрабатывали методами вариационной статистики с использованием компьютерной программы «Microsoft Excel». Статистическую значимость различий между группами оценивали с использованием t-критерия Стъюдента. Различия считали статистически значимыми при р<0,05.

Таблица 1 Антагонистическая активность пробиотических препаратов

	Тест-штамм _	Зона задержки роста подсеваемого тест-штамма, мм							
Питательная среда	Испытуемый препарат	St. aureus 209P	E. coli 157	Sh. flexneri 337	Sh. flexneri 170	Sh. sonnei 5063	Pr. mirabilis 56/10	Pr. mirabilis H-237	Pr. vulgaris 177
Среда Блау- рокка	Бифи- лакт-БИЛС	>30	>30	22,0 ± 2,00	>30	>30	>30	23,0 ± 7,00	22,0 ± 0,00
	Бифи- дум-бакте- рин	27,0 ± 3,00	26,0 ± 4,00	18,0 ± 1,05	26,5 ± 3,50	0,00 ± 0,00	8,50 ± 1,50	10,0 ± 0,30	10,0 ± 1,07
Среда МРС-5	Бифи- лакт-БИЛС	>30	>30	>30	>30	>30	>30	>30	>30
	Лактобакте- рин	26,67 ± 3,33	>30	24,0 ± 6,00	>30	>30	25,0 ± 5,00	27,33 ± 2,67	>30
	Ацилакт	>30	>30	24,67 ± 2,73	>30	>30	>30	28,67 ± 1,33	22,0 ± 0,00

Таблица 2 Изменение массы органов белых крыс в опыте хронической токсичности

Средние значения массы внутренних органов — m и их процентное соотношение к массе тела —%		Бифила	Контроль	
		10 доз	100 доз	ФР
	через 24 часа посл	е многократного вве	дения препарата	
Т	m	0,57 ± 0,05	$0,46 \pm 0,04$	$0,53 \pm 0,02$
Тимус -	%	$0,25 \pm 0,02$	$0,21 \pm 0,01$	$0,22 \pm 0,02$
C	m	0,71 ± 0,06	0.80 ± 0.04	$0,84 \pm 0,10$
Сердце -	%	$0,32 \pm 0,02$	$ \begin{array}{cccc} 20 & 1,83 \pm 0,15 \\ 04 & 0,84 \pm 0,05 \\ 33 & 8,15 \pm 0,45 \\ 29 & 3,73 \pm 0,15 \\ 05 & 0,67 \pm 0,12 \\ 03 & 0,31 \pm 0,04 \\ 16 & 1,63 \pm 0,10 \end{array} $	$0,34 \pm 0,01$
П	m	$1,99 \pm 0,20$	$1,83 \pm 0,15$	$2,00 \pm 0,14$
Легкие -	%	$0,87 \pm 0,04$	100 доз 0 введения препарата 0,46 ± 0,04 0,21 ± 0,01 0,80 ± 0,04 0,37 ± 0,02 1,83 ± 0,15 0,84 ± 0,05 8,15 ± 0,45 3,73 ± 0,15 0,67 ± 0,12 0,31 ± 0,04 1,63 ± 0,10 0,75 ± 0,05 0 введения препарата 0,62 ± 0,08 0,25 ± 0,03 0,76 ± 0,06 0,31 ± 0,01 2,28 ± 0,35 0,92 ± 0,11 8,51 ± 1,08 3,43 ± 0,25 0,69 ± 0,11 0,28 ± 0,02 1,49 ± 0,14	$0,83 \pm 0,03$
П	m	$8,54 \pm 0,33$	8,15 ± 0,45	8,90 ± 1,48
Печень -	%	3,81 ± 0,29	100 доз 10 введения препарата 0,46 ± 0,04 0,53 0,21 ± 0,01 0,22 0,80 ± 0,04 0,84 0,37 ± 0,02 0,34 1,83 ± 0,15 2,00 0,84 ± 0,05 0,83 8,15 ± 0,45 8,90 3,73 ± 0,15 3,60 0,67 ± 0,12 0,61 0,31 ± 0,04 0,25 1,63 ± 0,10 1,64 0,75 ± 0,05 0,68 10 введения препарата 0,62 ± 0,08 0,61 0,25 ± 0,03 0,23 0,76 ± 0,06 0,84 0,31 ± 0,01 0,32 2,28 ± 0,35 1,93 0,92 ± 0,11 0,74 8,51 ± 1,08 10,5 3,43 ± 0,25 3,94 0,69 ± 0,11 0,74 0,28 ± 0,02 0,28 1,49 ± 0,14 1,78	$3,60 \pm 0,26$
	m	$0,70 \pm 0,05$	$0,67 \pm 0,12$	$0,61 \pm 0,04$
Селезенка -	%	$0,31 \pm 0,03$	$0,31 \pm 0,04$	$0,25 \pm 0,02$
П	m	1,58 ± 0,16	$1,63 \pm 0,10$	1,64 ± 0,15
Почки -	%	$0,69 \pm 0,04$	$0,75 \pm 0,05$	$0,68 \pm 0,04$
	через 7 суток посл	е многократного вве	дения препарата	
Т	m	$0,60 \pm 0,10$	$0,62 \pm 0,08$	0,61 ± 0,06
Тимус -	%	$0,25 \pm 0,02$	О ВВЕДЕНИЯ ПРЕПАРАТА 0,46 ± 0,04 0,21 ± 0,01 0,80 ± 0,04 0,37 ± 0,02 0,1,83 ± 0,15 2, 0,84 ± 0,05 8,15 ± 0,45 8, 3,73 ± 0,15 0,67 ± 0,12 0,31 ± 0,04 0,75 ± 0,05 0,88 ± 0,00 0,25 ± 0,03 0,76 ± 0,06 0,31 ± 0,01 0,31 ± 0,04 0,22 ± 0,11 0,34 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,06 0,31 ± 0,01 0,36 ± 0,01 0,92 ± 0,11 0,028 ± 0,02 0,149 ± 0,14 1,	$0,23 \pm 0,01$
C	m	$0,75 \pm 0,04$	<u> </u>	
Сердце -	%	$0,31 \pm 0,01$	100 доз введения препарата 0,46 ± 0,04 0,21 ± 0,01 0,80 ± 0,04 0,37 ± 0,02 1,83 ± 0,15 0,84 ± 0,05 8,15 ± 0,45 3,73 ± 0,15 0,67 ± 0,12 0,31 ± 0,04 1,63 ± 0,10 0,75 ± 0,05 введения препарата 0,62 ± 0,08 0,25 ± 0,03 0,76 ± 0,06 0,31 ± 0,01 2,28 ± 0,35 0,92 ± 0,11 8,51 ± 1,08 3,43 ± 0,25 0,69 ± 0,11 0,28 ± 0,02 1,49 ± 0,14	$0,32 \pm 0,02$
Легкие -	m	$2,19 \pm 0,34$	$2,28 \pm 0,35$ 1,93	
легкие –	%	$0,92 \pm 0,14$	$0,84 \pm 0,05$ (6) $8,15 \pm 0,45$ (8) $8,15 \pm 0,45$ (9) $8,15 \pm 0,45$ (10) $8,15 \pm 0,15$ (11) $0,67 \pm 0,12$ (12) $0,31 \pm 0,04$ (13) $0,75 \pm 0,05$ (14) $0,75 \pm 0,05$ (15) $0,62 \pm 0,08$ (16) $0,25 \pm 0,03$ (17) $0,76 \pm 0,06$ (17) $0,76 \pm 0,06$ (17) $0,76 \pm 0,01$	$0,74 \pm 0,04$
Печень -	m	9,67 ± 0,92	8,51 ± 1,08	$10,5 \pm 1,30$
ттечень –	%	4,01 ± 0,11	$0,31 \pm 0,01 \qquad 0,3$ $2,28 \pm 0,35 \qquad 1,9$ $0,92 \pm 0,11 \qquad 0,7$ $8,51 \pm 1,08 \qquad 10,9$	
Селезенка -	m	$0,79 \pm 0,02$	$0,69 \pm 0,11$	$0,74 \pm 0,10$
Селезенка -	%	$0,34 \pm 0,03$	$0,28 \pm 0,02$	$0,28 \pm 0,02$
Пони	m	$1,59 \pm 0,18$	$1,49 \pm 0,14$	1,78 ± 0,14
Почки -	%	$0,66 \pm 0,02$	$0,62 \pm 0,01$	$0,67 \pm 0,01$

Таблица 3 Гематологические показатели белых крыс через 7 суток после многократного введения препарата

Примечание:

*- p < 0,05 по сравнению с контролем. П/я — палочкоядерные; С/я — сегментоядерные.

Клетки крови	10 доз		100	доз	Контроль (ФР)				
Эритроциты (*10 ¹² /л)	$4,34 \pm 0,22$		$5,60 \pm 0,71$		$5,36 \pm 0,69$				
Гемоглобин (г/л)	$119,0 \pm 3,16$		$112,0 \pm 5,02$		$111,0 \pm 3,72$				
Лейкоциты (*10 ⁹ /л)	$7,38 \pm 0,37$		$7,16 \pm 0,54$		$7,65 \pm 0,30$				
Лейкоцитарная формула									
П/	%	(*10°/л)	%	(*10°/л)	%	(*10°/л)			
П/я нейтрофилы	1,75±0,75	$0,13\pm0,06$	1,50±0,65	0,11±0,05	$0,75\pm0,48$	0,06±0,04			
С/я нейтрофилы	20,3±1,25	1,50±0,09	27,3±1,11*	1,95±0,08	20,3±2,75	1,55±0,21			
Эозинофилы	2,00±0,82	0,15±0,06	2,00±0,71	$0,14\pm0,05$	1,25±0,25	0,10±0,02			
Базофилы	0,00	0,00	0,00	0,00	0,00	0,00			
Лимфоциты	75,5±2,06	5,58±0,15	67,8±1,18*	4,85±0,08*	77,8±2,50	5,95±0,19			
Моноциты	0,50±0,29	0,04±0,02	1,00±0,58	0,07±0,04	0,00	0,00			

Результаты исследования

Индикаторные культуры на питательной среде Блаурокка оказались наиболее чувствительными к препарату бифилакт-БИЛС, зона задержки роста составляет более 30 мм, тогда как активность препарата бифидумбактерин заметно уступает, показатели зоны задержки колеблятся от 0 до 27 мм. На среде МРС-5 все препараты проявляют высокую активность по отношению к тест-штаммам, но следует отметить пробиотик бифилакт-БИЛС, у которого зона задержки роста подсеваемых штаммов составляла во всех случаях свыше 30 мм (табл. 1).

Таким образом, препарат бифилакт-БИЛС, бактериальная композиция которого включает три штамма лакто- и бифидобактерий, по своей совокупной ингибирующей активности в отношении условно-патогенной микрофлоры превосходит монопрепараты в тесте отсроченного антагонизма.

В ходе исследования острой и хронической токсичности по данным ежедневной регистрации было установлено, что у белых мышей и крыс средний показатель прироста массы тела в каждой группе достоверно не отличался от контроля. Патологических отклонений в поведении и двигательной активности не наблюдалось, изменений внешнего вида животных в сравнении с контрольной группой не было. К концу срока наблюдения не отмечалось снижения массы тела опытных животных по сравнению с контролем.

Через 24 ч и 7 суток после однократного и многократного введения препарата «Бифилакт-БИЛС» и физиологического раствора (ФР) было подвергнуто эвтаназии по 5 мышей и по 4 крысы от каждой группы. Животные были вскрыты, внутренние органы извлечены, осмотрены и взвешены. У крыс произведен забор крови для гематологического анализа, внутренние органы извлечены, осмотрены, взвешены и помещены в 10% раствор формалина для гистологических исследований (табл. 2).

Различий в патоморфологической картине органов через 24 ч и 7 суток после введения

испытуемого пробиотика и ФР не было выявлено. Внутренние органы животных имели все характерные признаки и строение. Оболочки, выстилающие внутренние полости, влажные, серовато-розового цвета, без признаков воспаления.

Таким образом, однократное и многократное введение препарата «Бифилакт-БИЛС» белым мышам и белым крысам не вызывало гибели животных, изменения внешнего вида, двигательной активности и не привело к патоморфологическим изменениям внутренних органов животных.

Проведенные гистологические исследования органов крыс в «остром» и «хроническом» опыте показали, что при введении максимальной дозы препарата (100 доз) наблюдаются признаки слабо выраженной гидропической дистрофии печени, которая не может расцениваться как проявление токсического повреждения органа. В тимусе отмечается гиперплазия коркового вещества, которая выражена умеренно и может быть расценена как иммунный ответ на введение препарата. Таким образом, у комплексного пробиотического препарата «Бифилакт-БИЛС» не обнаружено токсического действия на организм животных.

Результаты гематологического анализа показали, что однократное и многократное введение комплексного бактерийного препарата «Бифилакт-БИЛС» формы в изучаемых дозах не вызывает выраженных изменений в общем анализе крови лабораторных животных (табл. 3).

Практически во всех случаях отмечалось небольшое повышение количества лейкоцитов за счет сегментоядерных нейтрофилов и лимфоцитов. После многократного введения препарата «Бифилакт-БИЛС» в исследуемых дозах к концу срока наблюдения у всех опытных крыс наблюдалось повышение числа эритроцитов и содержания гемоглобина в крови по сравнению с контролем. Повышенное содержание гемоглобина можно расценивать как положительное влияние пробиотического препарата.

Выводы

Таким образом, по результатам проведенных исследований установлено, что комплексный пробиотический препарат «Бифилакт-БИЛС» по своей совокупной ингибирующей активности в отношении

условно-патогенной микрофлоры превосходит монопрепараты в тесте отсроченного антагонизма и не оказывает токсического воздействия на организм животных.

Литература

- МУК 4.2. 2602–10. Методы контроля. Биологические и микробиологические факторы. Система предрегистрационного доклинического изучения безопасности препаратов. Отбор, проверка и хранение производственных штаммов, используемых для производства пробиотиков / Под ред. Н.В. Медуницына и др. — Москва. — 2008. — 78 с.
- Методические указания по изучению общетоксического действия фармакологических веществ / сост. Е.В. Арзамасцев, Т.А. Гуськова, И.В. Березовская и др. — М. — 14 с.
- Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. члена-корр. РАМН, проф. Р.У. Хабриева. Москва. 2005. 14 с.