УДК. 616.36-003.8-008.9-06:085.27

РОЛЬ МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ В РАЗВИТИИ НЕАЛКОГОЛЬНОЙ ЖИРОВОЙ БОЛЕЗНИ ПЕЧЕНИ

Звягинцева Т.Д., Глущенко С.В.

Харьковская медицинская академия последипломного образования (г. Харьков, Украина)

THE ROLE OF MITOCHONDRIAL DYSFUNCTION IN THE DEVELOPMENT OF NON-ALCOHOLIC FATTY LIVER DISEASE

Zvyagintseva T. D., Glushchenko S.V.

Kharkov Medical Academy of Postgraduate Education (Kharkov, Ukraine)

Для цитирования: Звягинцева Т. Д., Глущенко С. В. Роль митохондриальной дисфункции в развитии неалкогольной жировой болезни печени. Экспериментальная и клиническая гастроэнтерология 2018;150(2): 37–43.

For citation: Zvyagintseva T.D., Glushchenko S.V. The role of mitochondrial dysfunction in the development of non-alcoholic fatty liver disease. Experimental and Clinical Gastroenterology. 2018;150(2): 37–43.

Звягинцева Т.Д.— д.м.н., профессор, заведующая кафедрой гастроэнтерологии Харьковской медицинской академии последипломного образования.

Глущенко С.В.— к.м.н., ассистент кафедры гастроэнтерологии Харьковской медицинской академии последипломного образования.

Zvyagintseva T.D. — Doctor of Medical Sciences, Professor, Head of the Department of Gastroenterology, Kharkov Medical Academy of Postgraduate Education.

Glushchenko S.V.— Candidate of Medical Sciences, Assistant of the Department of Gastroenterology of Kharkov Medical Academy of Postgraduate Education.

Глущенко Светлана Владимировна Glushchenko Svetlana Vl. stadias@mail.ru

Резюме

Цель исследования: усовершенствование диагностики неалкогольного стеатогепатита (НАСГ) и разработка оптимально эффективных методов коррекции выявленных нарушений.

Материалы и методы: 65 больных с верифицированным НАСГ. Возраст пациентов составлял от 23 до 67 лет. Среди них было 36 (55,4%) женщин и 29 (44,6%) мужчин. Контрольную группу составляли 20 здоровых лиц. Изучалась эффективность комплексной терапия с включением препарата L-карнитина, депротеинизованого гемодеривата крови телят и фолиевой кислоты.

Результаты: выявлено наличие карнитиновой недостаточности, гипергомоцистеинемии, повышения уровня провоспалительных цитокинов у всех пациентов с НАСГ. Через месяц лечения комплексной терапией уровень L-карнитина повысился с 14,5 (13,1;15,7) мкмоль/л до 31,1 (28,8;34,1) мкмоль/л (p<0,001), показатель гомоцистеина снизился до субнормальных цифр — 11,8 (11,0;12,8) мкмоль/л (p<0,001). При изучении показателей цитокинового профиля в группе после лечения выявлено достоверное снижение уровня провоспалительных цитокинов.

Заключение: использование комплексной терапии с включением препаратов L-карнитина, депротеинизованого гемодеривата крови телят в качестве антигипоксанта и фолиевой кислоты оказывает положительное влияние на клиническое течение заболевания, способствует устранению карнитиновой недостаточности, гипергомоцистеинемии, снижению уровня провоспалительных цитокинов.

Ключевые слова: неалкогольная жировая болезнь печени, неалкогольный стеатогепатит, L-карнитин, гомоцистеин, гипергомоцистеинемия.

Summary

Objective: Improvement of the diagnosis of non-alcoholic steatohepatitis (NASH) and the development of optimally effective methods for correcting the revealed violations.

Materials and Methods: examined 65 patients with verified NASH. The age of the patients ranged from 23 to 67 years. Among them were 36 (55.4%) women and 29 (44.6%) men. The control group consisted of 20 healthy individuals. The effectiveness of complex therapy with the inclusion of the drug L-carnitine, deproteinized hemoderivat of calves and folic acid was studied.

Results: The presence of carnitine insufficiency, hyperhomocysteinemia, increase in the level of proinflammatory cytokines in all patients with NASH. After a month of treatment with complex therapy, the level of L-carnitine increased from 14.5 (13.1, 15.7) μ mol/l to 31.1 (28.8, 34.1) μ mol/l (p<0.001), homocysteine decreased to subnormal figures — 11.8 (11.0, 12.8) μ mol/l (p<0.001). When studying the cytokine profile in the group after treatment, a significant decrease in the level of proinflammatory cytokines was revealed.

Conclusion: The use of complex therapy with the inclusion of drugs L-carnitine, deproteinized hemoderevate blood of calves as an antihypoxant and folic acid has a positive effect on the clinical course of the disease, contributes to the elimination of L-carnitine deficiency, hyperhomocysteinemia, a decrease in the level of pro-inflammatory cytokines.

Key words: non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, L-carnitine, homocysteine, hyperhomocysteinemia.

Неалкогольная жировая болезнь печени (НАЖБП) остается актуальной проблемой современной клинической медицины благодаря ее широкому распространению и проградиентному течению с развитием тяжелых осложнений. В развитых странах НАЖБП является наиболее распространенным хроническим заболеванием печени (частота встречаемости от 17 до 33%), а неалкогольный стеатогепатит (НАСГ) выявляется у 2–3% общей популяции [1].

В последние годы появляется все больше данных о том, что значительную роль в развитии и прогрессировании НАЖБП играют повреждение и дисфункция митохондрий (MX). Основными биохимическими процессами, имеющими отношение к энергетическому обмену и происходящими в МХ, являются: цикл трикарбоновых кислот (цикл Кребса), β-окисление жирных кислот (ЖК), карнитиновый цикл, транспорт электронов в дыхательной цепи и окислительное фосфорилирование. Любой из указанных процессов может нарушаться и быть причиной митохондриальной недостаточности. Показано, что нарушения структурно-функциональной организации митохондрий при НАЖБП включают ультраструктурные нарушения мембранного аппарата митохондрий, нарушение структуры мито-ДНК, снижение активности комплекса дыхательной цепи и β-окисления свободных жирних кислот (СЖК) [2].

Основной путь энергетического обмена связан с β-окислением ЖК в МХ, а вспомогательный путь представлен гликолизом с последующим окислением в МХ пирувата. L-карнитин играет важную роль в энергетическом обмене, так как участвует в транспорте ацильных остатков ЖК с помощью системы «карнитинового челнока». В его состав входят карнитинпальмитоилтрансфераза-1, расположенная на внешней мембране МХ, карнитинацилкарнитинтранслоказа, локализованная во внутренней мембране МХ, которая обменивает карнитин МХ и ацилкарнитины цитоплазмы,

и карнитинпальмитоилтрансфераза-2, находящаяся в матриксе МХ [3]. В матриксе МХ ацилкарнитин подвергается воздействию карнитинпальмитоилтрансферазы-2 и превращается в ацил-КоА. Когда поступление ацил-КоА превосходит его потребление в цикле β-окисления, ацил-КоА вновь превращается в ацилкарнитины, которые удаляются из МХ в цитоплазму, а затем из клеток – в кровь. Этот процесс предупреждает накопление ацил-КоА в цитоплазме и тормозит развитие липотоксического эффекта.

Ограничение активности карнитинацетилтрансферазы возможно вследствие снижения внутримитохондриальной концентрации L-карнитина при повышенном удалении из клеток ацилкарнитинов [4, 5] и соответственно при этом будет снижаться уровень свободного КоА [6, 7]. Таким образом, наряду с карнитинпальмитоилтрансферазой-1, карнитинацетилтрансферазой и карнитинпальмитоилтрансферазой-2, L-карнитин контролирует скорость окисления длинноцепочечных ЖК, выступая в качестве специфического кофактора, облегчающего их перенос через внутреннюю мембрану митохондрий [8].

Образование продуктов ПОЛ в жировых депо способствует торможение дыхательной функции митохондрий [9]. Под воздействием свободных радикалов непосредственно в митохондриях происходит образование ФНО- α , которому принадлежит важная роль в патогенезе НАЖБП. ФНО- α индуцирует набухание митохондрий со снижением плотности их матрикса и потерей перегородок. Митохондриальная дисфункция не только обусловливает нарушение β -окисления ЖК, но и приводит к увеличению продукции свободных радикалов, провоспалительных цитокинов, что способствует поддержанию воспалительного и фибротического процессов в печени – основных признаков прогрессирования НАЖБП [10, 11].

L-карнитин подавляет дисфункцию МХ, возникающую при ишемии/реперфузии и связанной

с ней активацией мега-поры (надмолекулярной поры с транзиторной проницаемостью), размер которой позволяет транспортироваться веществам с молекулярной массой 1500 Да. Переход мега-поры в открытое состояние, когда проапоптозные митохондриальные белки выходят в цитоплазму и активируют ферментативный каскад каспаз, приводит к исчезновению градиентов ионов через внутреннюю мембрану МХ, торможению или полной остановке синтеза АТФ и гибели клеток по одному из двух механизмов – апоптозу или некрозу.

В ряде экспериментальных исследований показано, что L-карнитин снижает набухание МХ и деполяризацию внутренней мембраны МХ, индуцированных длинноцепочечных ЖК и пальмитоил-КоА [12], блокирует активацию мега-поры, вызванную олеиновой кислотой, в результате усиления ее β-окисления [13], тормозит открывание мега-поры, благодаря снижению уровня радикалов кислорода, образующихся в МХ. Установлено, что L-карнитин подавляет апоптоз, зависимый от МХ, как в условиях in vitro, так и in vivo [14]. Кроме того, благодаря усилению окисления ЖК, L-карнитин предупреждает образование церамида – одного из наиболее сильных индукторов апоптоза.

Таким образом, можно полагать, что эффекты L-карнитина на уровне МХ или целой клетки происходят вследствие ингибирования повреждения мембран МХ, что связано с улучшением энергетического обмена и блокадой утечки электронов в транспортной цепи МХ, уменьшением генерации радикалов кислорода.

Учитывая, что L-карнитин синтезируется в основном в печени и почках из лизина и метионина, при участии железа (Fe2+), аскорбиновой кислоты и витаминов ВЗ В6, В12 и фолиевой кислоты ключевым механизмом в развитии карнитиновой недостаточности является нарушение синтеза и обмена метионина [15]. При дефиците или нарушении обмена хотя бы одного из этих веществ эндогенный синтез L-карнитина снижается [16].

Метаболически сопряженным с L-карнитином является гомоцистеин (ГЦ), поскольку так же как и L-карнитин зависим от обмена метионина, витаминов B_6 , B_{12} и фолиевой кислоты.

Установлено, что негативное влияние гипергомоцистеинемии (ГГЦ) осуществляется через нарушение процессов метилирования ДНК, протеинов, индукцию оксидативного стресса, нарушение выработки биологически-активных молекул и вазодилятаторов, химическую модификацию (гомоцистеинирование) белков [17]. Одной из причин гипометилирования в условиях ГГЦ является накопление S-аденозилгомоцистеина, - мощного ингибитора метилтрансфераз [18]. Для поддержания активных метилтрансферазных реакций необходимо быстрая утилизация, в нормальных условиях это осуществляется при участии S-аденозилгомоцистеингидролазы. Реакция гидролизации S-аденозилгомоцистеина является обратимой, поэтому в условиях ГГЦ она ведет к увеличению концентрации S-аденозилгомоцистеина и развитию гипометилирования.

Доказано, что нарушение метилирования вызывает различные нарушения в организме – снижение

синтеза нейромедиаторов, изменения мембранного спектра фосфолипидов, текучести мембран, нарушение структуры белков и нуклеиновых кислот, нарушение дифференцировки и репарации клеток. В некоторых работах было показано, что снижение активности метилирования может приводить к развитию эндотелиальной дисфункции, дисрегуляции обмена липидов в гепатоцитах, снижению чувствительности сосудов к действию вазорелаксантов [19].

ГЦ обладает прооксидантными свойствами и индуцирует оксидативный стресс путем образования активных форм кислорода, что приводит к нарушению структуры и функции мембран, белков, нуклеиновых кислот, активирует воспаление и гибель клеток. У больных высокие концентрации ГЦ стимулируют образование активных форм кислорода, вызывают оксидативную модификацию белков и липидов, что приводит к активации печеночных фибробластов. Показано влияние ГГЦ на усиление процессов ПОЛ и развитие окислительного стресса [20].

Токсическое действие ГГЦ реализуется также путем развития системного воспаления. Установлено, что ГЦ стимулирует выработку провоспалительных цитокинов [21].

Помимо ферментов, важную роль в метаболизме гомоцистеина выполняют витамины В6, В12 и фолиевая кислота. Витамин В6 является основным витамином обмена аминокислот, принимая участие в процессах трансаминирования. Снижение обеспечения организма витамином В12 приводит к повышению уровней общего холестерина. Дефицит фолиевой кислоты в гепатоцитах приводит к нарушению регуляции метаболизма гомоцистеина, повышение уровня которого сопровождается снижением концентрации S-аденозилметионина, что изменяет клеточный метаболизм липидов, вызывая активацию факторов транскрипции в печени и усиление биосинтеза холестерина [22].

В лечении НАЖБП остается много нерешенных вопросов. Похудение, коррекция гиперлипидемии и гипергликемии, отмена потенциально гепатотоксических препаратов – главные принципы терапии. Эти меры имеют лечебную эффективность у относительно небольшой части больных.

В связи с наличием карнитиновой недостаточности, митохондриальной дисфункции, повышенной эктопией жирных кислот в печень, в терапию НАЖБП целесообразно, согласно мнению некоторых авторов, включать препараты, содержащие L-карнитин. Учитывая механизмы возникновения и патогенетические аспекты развития ГГЦ при НАЖБП, медикаментозная коррекция предусматривает назначение фармакологических препаратов с гипогомоцистеинемического действием: витаминов В12, В6, фолиевой кислоты. Для устранения повреждения гепатоцитов, что происходит на фоне высвобождения радикалов кислорода, фиброгенных мелиаторов, активации воспалительных клеток и тканевой гипоксии, которая сопровождается депозицией белков экстрацеллюлярного матрикса, обоснованным является применение в комплексной терапии НАЖБП антигипоксантов.

Цель исследования: усовершенствование диагностики НАСГ и разработка оптимально эффективных методов коррекции выявленных

нарушений на основании изучения уровней L-карнитина, ГЦ и провоспалительных цитокинов (ФНО-а, ИЛ-6) у больных НАСГ.

Материалы и методы

Под нашим наблюдением находилось 65 больных, у которых был диагностирован НАСГ. Возраст пациентов составлял от 23 до 67 лет. Среди них было 36 (55,4%) женщин и 29 (44,6%) мужчин. Контрольную группу составляли 20 здоровых лиц.

У всех больных диагноз верифицирован с помощью инструментальных (УЗИ) и клинико-лабораторных методов исследования. Для исключения вирусной этиологии поражения печени определяли маркеры гепатитов В и С методом ПЦР. Критериями исключения служили употребление алкоголя или гепатотропных ядов в анамнезе.

Всем больным была назначена комплексная терапия с включением препарата «Гепадиф» (457,2 мг карнитина в сутки), депротеинизованого гемодеривата крови телят (1000 мг в сутки 10 дней, затем

600 мг в сутки), фолиевая кислота (10 мг в сутки). Курс лечения составлял 1 месяц.

Об эффективности применяемой схемы судили на основании динамики клинических симптомов и биохимических показателей печеночных проб в сыворотке крови (АЛТ, АСТ, липидного профиля), определение L-карнитина и ГЦ, ФНО-а и ИЛ-6 в сыворотке крови.

Статистическую обработку результатов проведено с помощью стандартного пакета программ Microsoft Excel. Достоверность различий оценивали по методу вариационной статистики с помощью t-критерия Стьюдента и использован метод персентилей, для определения связей между показателями – корреляционный анализ по Спирмену.

Результаты исследований и их обсуждение

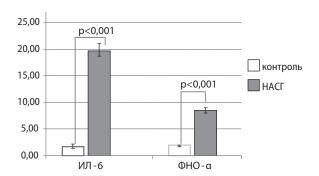
При анализе клинических признаков, с точки зрения их частоты, наиболее характерным признаком для больных НАСГ был астеновегетативный синдром – 87,7% больных.

По данным УЗИ у большинства – 32 (49,2%) больных обнаружена тяжелая степень стеатоза печени, умеренный стеатоз – у 18 (27,7%) пациентов, 15 (23,1%) больных имели мягкий стеатоз печени. Увеличение печени от 1 до 3 см имело место у 50 (84,6%) больных. У подавляющего числа больных – 57 (87,7%), был обнаружен диффузный стеатоз печени, очаговый стеатоз – у 8 (12,3%) пациентов.

При анализе биохимических проб печени у пациентов были достоверно повышены показатели АЛТ (р <0,001) и АСТ (р <0,001). Дислипидемия имела место у всех больных. Общий холестерин, β-липопротеиды, триглицеридов, ЛПНП и ЛПОНП были достоверно повышены у всех пациентов по сравнению с группой контроля (р <0,001). ЛПВП были достоверно (р <0,001) снижены у всех больных.

У больных НАСГ имело место повышение содержания ФНО- α и ИЛ-6 (р <0,001) по сравнению с контрольной группой (рис. 1).

Содержания L-карнитина в сыворотке крови было снижено и составило 14,5 (13,1;15,7) мкмоль/л (p<0,001). Поскольку процесс переноса жирных кислот происходит при участии карнитинзависимых трансфераз, то снижение уровня L-карнитина сыворотки крови может быть причастно к нарушению липидного обмена у больных НАСГ.


Установлены корреляционные связи между уровнем L-карнитина сыворотки крови и показателями липидного спектра крови. Выявлена обратная корреляционная зависимость между L-карнитином и ОХ (r=-0.74) (p<0.01), L-карнитином и ТГ (r=-0.73 (p<0.01), L-карнитином и ЛПНП (r=-0.73 (p<0.01), L-карнитином и ЛПОНП (r=-0.73 (p<0.01), L-карнитином и ЛПОНП (r=-0.67

(p < 0.01). Прямая корреляционная связь установлена между L-карнитином и ЛПВП: r = 0.74 (p < 0.01).

Сниженный уровень L-карнитина свидетельствует о наличии карнитиновой недостаточности, приводящей к нарушению транспорта жирных кислот в МХ, увеличении накопления липидов в тканях, в частности в печени, развивающейся митохондриальной дисфункции. Имеющиеся корреляционные связи говорят о причастности L-карнитина к развитию липотоксического стресса, а как следствие активации ПОЛ и развитию системного воспаления в печени. Тогда как клеточное повреждение гепатоцитов усиливает карнитиновий дисбаланс и нарастание метаболических нарушений.

Изучение показателей ГЦ в сыворотке крови у больных НАСГ показало повышение его уровня до 31,25 (29,67;35,12) мкмоль/л (p<0,001), что в 2,7 раза превышало показатели здоровых лиц. При изучении содержания ГЦ установлены возрастные различия уровня этой аминокислоты, так у всех пациентов содержание ГЦ возрастало по мере увеличения возраста. У больных в возрасте до 40 лет уровень ГЦ был достоверно ниже 29,85 (29,33; 31,65) мкмоль / л, (p<0,05), чем в возрастной группе старше 40 лет – 31,99 (30,17; 36,40) мкмоль / л. При анализе полученных результатов была обнаружена сильная корреляционная зависимость между ГЦ и ФНО- α (r = 0,76, (p<0,01)), уровнем ИЛ-6 и ГЦ (r = 0,75 (p<0,01)).

Дополнительным подтверждением патогенетической связи между ГЦ и развитием системного воспаления является обнаруженная нами корреляционная зависимость уровня цитолитических ферментов печени от содержания ГЦ сыворотки крови: ГЦ и АЛТ – r = 0.77 (p < 0.01), АСТ и ГЦ (r = 0.77 (p < 0.01)) Кроме того, содержание провоспалительных цитокинов и маркеров клеточного

Рисунок 1.

Уровень ИЛ-6 и ФНО- α в сыворотке крови больных НАСГ в сравнении с контрольной группой (пг/мл).

Показатель	Уровень ГГЦ	HACΓ, n=65
ФНП-α, пг/мл	I степень	7,93(7,63;8,41)
	II степень	9,0(8,51;9,08)*
ИЛ-6, пг/мл	I степень	18,65(16,98;19,33)
	II степень	21,05(20,01;22,08)*
АЛТ, Ед/л	I степень	98,47±4,23
	II степень	111,48±7,32*
АСТ, Ед/л	I степень	86,89±4,76
	II степень	100,26±6,68*

Таблица 1

Содержание провоспалительных цитокинов (Ме (25%; 75%)) и цитологических ферментов печени (М \pm m) у больных НАСГ в зависимости от степени ГГЦ

Примечание:

* - p<0.001 относительно I степени

Показатели	До лечения	После лечения
ФНО-α, пг/мл	8,50 (7,97;9,00)	1,87(1,69;1,99)*#
ИЛ-6, пг/мл	19,66(18,74;21,10)	1,95(1,82;2,14)*#
L-карнитин, мкмоль/л	14,5 (13,1;15,7)	31,1(28,8;34,1) *#
ГЦ, мкмоль/л	31,25(29,7;35,1)	11,8(11,0;12,8)*#

Таблица 2.

Показатели L-карнитина, ГЦ и провоспалительных цитокинов до и после терапии.

Примечание:

* – p<0,05 относительно группы контроля; # – p<0,001 достоверность различий до и после лечения.

повреждения печени достоверно (р <0,001) рос со степенью ГГЦ ($maб\pi$. 1).

Сильные корреляционные зависимости между ГЦ и провоспалительных цитокинов, а также маркерами клеточного повреждения доказывают участие ГЦ в развитии воспалительной реакции в клетках печени.

В динамике лечения у всех больных отмечалось уменьшение клинических проявлений заболевания и нормализация самочувствия. У пациентов на фоне терапии улучшение общего состояния отмечалось на 4–5 день от начала лечения.

На фоне проводимой терапии в биохимических показателях отмечена положительная динамика. Нормализация показателей синдрома цитолиза и липидного профиля свидетельствует о липолитическом действии препарата L-карнитина и его влиянии на апоптоз гепатоцитов. Это подтверждается данными литературы об участии L-карнитина в транспорте длинноцепочечных ЖК в митохондриальный матрикс, внутриклеточной регуляции метаболизма кофермента А и участии в обмене

фосфолипидов, что способствует поддержанию жизнеспособности клетки и оказывает защитное действие при апоптозе.

В процессе лечения повышение концентрация L-карнитина у больных повысилась до 31,1 (28,8;34,1) мкмоль/л (p<0,001). При исследовании уровня ГЦ сыворотки крови в динамике лечения было отмечено его достоверное снижение, по сравнению с показателями до лечения, до 11,8 (11,0;12,8) мкмоль/л (p<0,001).

При изучении показателей цитокинового профиля в группе после лечения установлено снижение показателя ФНО- α – 1,87(1,69;1,99) пг/мл (p<0,001), ИЛ-6–1,95(1,82;2,14) пг/мл (p<0,001) (Табл. 2). Имеющиеся результаты согласуются с данными литературы о способности L-карнитина уменьшать действие липотоксического стресса путем повышения β -окисления свободных жирных кислот. Так же, L-карнитин уменьшает уровни провоспалительных цитокинов и оказывает модулирующее действие на воспалительные реакции [11].

Выводы

У больных НАСГ выявлен карнитиновий дисбаланс, который проявляется снижением уровня L-карнитина сыворотки крови (p<0,001), что свидетельствует о нарушении митохондриального

транспорта СЖК и развитие митохондриальной дисфункции.

Выявление роста уровня ГЦ сыворотки крови (p<0,001), свидетельствует о ГГЦ, которая более

выражена у лиц старше 40 лет (р <0,05). Сильные корреляционные зависимости между ГЦ и провоспалительными цитокинами, а также маркерами клеточного повреждения (АЛТ и АСТ) доказывают участие ГЦ в развитии воспалительной реакции в клетках печени.

Использование комплексной терапии с включением препаратов L-карнитина, депротеинизованого

гемодеривата крови телят в качестве антигипоксанта и фолиевой кислоты оказывает положительное влияние на клиническое течение заболевания, способствует устранению карнитиновой недостаточности, ГГЦ, снижению уровня провоспалительных цитокинов. Применение комплексного подхода к коррекции метаболических нарушений при НАСГ является более эффективным.

Литература

- Kleiner D., Brunt E. Non-alcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 2012; 32: 003–13.
- Musso G., Gambino R., Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews 2010; 11: 6: 430–45.
- Lopaschuk G.D., Ussher J. R., Folmes C. D.L. et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90: 1: 207–58.
- Noland R.C., Koves T. R., Seiler S. E. et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009; 284: 34: 22840–52.
- Sharma Sh., Black St. M. Carnitine homeostasis, mitochondrial function, and cardiovascular disease. Drug Disc Today Dis Mech 2009; 6: 1–4: e31—e39.
- Indiveri C., Iacobazzi V., Tonazzi A. et al. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol Aspects Med 2011; 32: 4–6: 223–33.
- Lee K., Kerner J., Hoppel Ch. L. Mitochondrial camitinepalmitoyl-transferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 2011; 286: 29: 25655–62.
- 8. Li H., Ying H., Hu A. et al. Therapeutic Effect of Gypenosides on Nonalcoholic Steatohepatitis via Regulating Hepatic Lipogenesis and Fatty Acid Oxidation. Biol Pharm Bull. 2017; 40 (5): 650–57.
- Tonazzi A., Giangregorio N., Console L. et al. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. Biochim Biophys Acta 2017; 1858 (7): 475–82.
- Tiniakos D.G., Vos M.B., Brunt E.M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 2010: 5: 145–71.
- Polyzos S.A., Kountouras J., Zavos C. Curr Nonalcoholic fatty liver disease: the pathogenetic roles of insulin

- resistance and adipocytokines. Mol Med 2009; 9: 3: 299–314.
- Furuno T., Kanno T., Arita K. et al. Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol 2001; 62: 8: 1037–46.
- 13. Oyanagi E., Yano H., Kato Y. et al. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria. Cell Biochem Funct 2008; 26: 7: 778–86.
- 14. *Pillich R.T., Scarsella G., Risuleo G.* Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-L-carnitine to mouse fibroblasts in culture. Exp Cell Res 2005; 306: 1: 1–8.
- 15. Mel'nik A.V., Voloshchouk N. I., Pentyuk N. O. et al. Role of Hydrogen Sulfide and Sulfur-Containing Amino Acids in Regulation of Tone of Smooth Muscles of the Vascular Wall in Rats. Neurophysiol 2010; 2: 126–31.
- Grattagliano I., Bari O., Bernardo T. C. et al. Role of mitochondria in nonalcoholic fatty liver disease–from origin to propagation. Clin Biochem 2012; 45: 610–18.
- 17. *Ivanov I.*, *Heydeck D.*, *Hofheinz K. et al.* Molecular enzymology of lipoxygenases. Archives of Biochemistry and Biophysics 2010; 503: 2: 161–74.
- 18. *Maron A.B., Loscalzo J.* The Treatment of Hyperhomocysteinemia. Annu Rev Med 2009; 60: 39–54.
- Naik A., Belic A., Zander U. M., Rozman D. Molecular interactions between NAFLD and xenobiotic metabolism. Frontiers sn genetics 2013; 4: 2: 75–88.
- 20. Newton J. L. Systemic Symptoms in Non-Alcoholic Fatty Liver Disease. Dig Dis 2010; 28: 1: 214–19.
- Farrell G.C., McCullough A.J., Day C. P. et al. Non-Alcoholic Fatty Liver Disease: A Practical Guide. 2013, Wiley-Blackwell – 324p.
- 22. *Powel E.E., Jonsson J. R., Clouston A. D.* Metabolic Factors and Non-Alcoholic Fatty Liver Disease as Co-Factors in Other Liver Diseases. Dig Dis 2010; 28: 1: 186–91.

Reference

- Kleiner D., Brunt E. Non-alcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 2012; 32: 003–13.
- Musso G., Gambino R., Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews 2010; 11: 6: 430–45.
- Lopaschuk G.D., Ussher J. R., Folmes C. D.L. et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90: 1: 207–58.
- Noland R.C., Koves T. R., Seiler S. E. et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009: 284: 34: 22840–52.
- Sharma Sh., Black St. M. Carnitine homeostasis, mitochondrial function, and cardiovascular disease. Drug Disc Today Dis Mech 2009; 6: 1–4: e31—e39.

- Indiveri C., Iacobazzi V., Tonazzi A. et al. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol Aspects Med 2011; 32: 4–6: 223–33.
- Lee K., Kerner J., Hoppel Ch. L. Mitochondrial camitinepalmitoyl-transferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 2011; 286: 29: 25655–62.
- Li H., Ying H., Hu A. et al. Therapeutic Effect of Gypenosides on Nonalcoholic Steatohepatitis via Regulating Hepatic Lipogenesis and Fatty Acid Oxidation. Biol Pharm Bull. 2017; 40 (5): 650–57.
- Tonazzi A., Giangregorio N., Console L. et al. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. Biochim Biophys Acta 2017; 1858 (7): 475–82.

- 10. *Tiniakos D.G.*, *Vos M. B.*, *Brunt E. M.* Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 2010; 5: 145–71.
- 11. *Polyzos S.A., Kountouras J., Zavos C.* Curr Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Mol Med 2009; 9: 3: 299–314.
- Furuno T., Kanno T., Arita K. et al. Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol 2001; 62: 8: 1037–46.
- Oyanagi E., Yano H., Kato Y. et al. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria. Cell Biochem Funct 2008; 26: 7: 778–86
- 14. *Pillich R.T., Scarsella G., Risuleo G.* Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-L-carnitine to mouse fibroblasts in culture. Exp Cell Res 2005; 306: 1: 1–8.
- 15. Mel'nik A.V., Voloshchouk N. I., Pentyuk N. O. et al. Role of Hydrogen Sulfide and Sulfur-Containing Amino

- Acids in Regulation of Tone of Smooth Muscles of the Vascular Wall in Rats. Neurophysiol 2010; 2: 126–31.
- Grattagliano I., Bari O., Bernardo T. C. et al. Role of mitochondria in nonalcoholic fatty liver disease–from origin to propagation. Clin Biochem 2012; 45: 610–18.
- Ivanov I., Heydeck D., Hofheinz K. et al. Molecular enzymology of lipoxygenases. Archives of Biochemistry and Biophysics 2010; 503: 2: 161–74.
- 18. *Maron A.B., Loscalzo J.* The Treatment of Hyperhomocysteinemia. Annu Rev Med 2009; 60: 39–54.
- Naik A., Belic A., Zander U. M., Rozman D. Molecular interactions between NAFLD and xenobiotic metabolism. Frontiers sn genetics 2013; 4: 2: 75–88.
- 20. Newton J. L. Systemic Symptoms in Non-Alcoholic Fatty Liver Disease. Dig Dis 2010; 28: 1: 214–19.
- Farrell G.C., McCullough A.J., Day C.P. et al. Non-Alcoholic Fatty Liver Disease: A Practical Guide. 2013, Wiley-Blackwell – 324p.
- 22. *Powel E.E., Jonsson J. R., Clouston A. D.* Metabolic Factors and Non-Alcoholic Fatty Liver Disease as Co-Factors in Other Liver Diseases. Dig Dis 2010; 28: 1: 186–91.