

экспериментальная гастроэнтерология

experimental gastroenterology

ВЛИЯНИЕ СЕЛЕКТИВНОЙ ДЕКОНТАМИНАЦИИ ГРАМОТРИЦАТЕЛЬНОЙ ФЛОРЫ НА МИКРОБИОТУ КИШЕЧНИКА В УСЛОВИЯХ ГИПОХЛОРГИДРИИ

Тропская Н.С., Шашкова И.Г., Черненькая Т.В., Попова Т.С. ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского Департамента Здравоохранения г. Москвы»

THE INFLUENCE OF SELECTIVE DECONTAMINATION OF GRAM-NEGATIVE FLORA ON INTESTINAL MICROBIOTA IN HYPOCHLORHYDRIA

Tropskaya N. S., Shashkova I. G., Chernen'kaya T.V., Popova T. S. N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Healthcare Department

Тропская Наталия СергеевнаTropskaya Nataliya S.
ntropskaya@mail.ru

Тропская Н.С. — ведущий научный сотрудник научной лаборатории экспериментальной патологии, д.б.н.

Шашкова И.Г. — лаборант-исследователь научной лаборатории экспериментальной патологии

Черненькая Т.В. — заведующая научной лабораторией клинической микробиологии к.м.н.

Попова Т.С. — заведующая научной лабораторией экспериментальной патологии д.б.н., профессор

 $\textbf{Tropskaya Nataliya} \\ - \text{D. Sc. (Biology), Leading Researcher of the Scientific Laboratory of Experimental Pathology)} \\$

Shashkova Irina — Laboratory Assistant of the Scientific Laboratory of Experimental Pathology

Chernen'kaya Tatyana — Ph.D. (Medicine), Head of the Scientific Laboratory of Clinical Microbiology

Popova Tamara — D. Sc. (Biology), Prof., Head of the Scientific Laboratory of Experimental Pathology

Резюме

Цель исследования: изучить влияние колистина на изменение качественного и количественного состава полостной микрофлоры тощей и слепой кишок в условиях гипохлоргидрии.

Материалы и методы: Эксперименты выполнены на 10 крысах самцах линии Вистар с массой тела 400—450 г. В условиях гипохлоргидрии, вызванной париетом, изучено влияние внутрижелудочного введения колистина на полостную микрофлору тощей и слепой кишок.

Результаты. Показано, что введение колистина в течение 7 суток в условиях гипохлоргидрии приводит к изменениям в составе микрофлоры слепой кишки и защищает от избыточной колонизации проксимальные отделы тонкой кишки.

Ключевые слова: колистин, кишечная микрофлора, гипохлоргидрия

Экспериментальная и клиническая гастроэнтерология 2017; 147 (11): 92-95

Eksperimental'naya i Klinicheskaya Gastroenterologiya 2017; 147 (11): 92-95

Введение

Одним из механизмов, контролирующих кишечную микрофлору, является кислотный барьер желудка [1]. При снижении желудочной кислотопродукции (медикаментозное или оперативное ее подавление) наблюдается колонизация микрофлорой проксимальных отделов тонкого кишечника [2]. Хорошо известно, что применение антибиотиков изменяет

баланс микрофлоры [3,4]. Кроме того, характер изменения микрофлоры кишечника зависит от спектра действия антибиотика [5]. К антибиотикам узкого спектра действия относится колистин. Колистин, является поверхностным биологически активным веществом, которое взаимодействует с клеточными мембранами грамотрицательных

бактерий, в результате чего меняется их структура и функция, что ведет к гибели бактериальной клетки [6]. Ранее в экспериментах на здоровых крысах нами было показано, что внутрижелудочное введение колистина в течение 7 дней приводило к выраженным изменениям в количественном составе микрофлоры слепой кишки, при этом в тощей кишке сохранялась нормальная микробиота [7].

Данное исследование посвящено решению следующего вопроса: будет ли сохраняться нормальная микрофлора проксимальных отделов тонкой кишки при введении колистина в условиях гипохлоргидрии?

Цель исследования – изучить влияние колистина на изменение качественного и количественного состава полостной микрофлоры тощей и слепой кишок в условиях гипохлоргидрии.

Материал и методы исследования

Исследования выполнены на 10 крысах самцах линии Вистар с массой тела 400–450 г. Протокол исследований был одобрен локальным комитетом по биомедицинской этике НИИ СП им. Н.В. Склифосовского.

Контрольную группу составили 5 здоровых животных. В опытной группе (n=5) за 7 дней до экспериментов была проведена предварительная оперативная подготовка. Для предварительной оперативной подготовки использовали раствор кетамина, который вводили внутрибрюшинно из расчета 0,3 мл на 100 г массы тела. Во время операции проводили срединную лапаротомию, вживляли зонд в антральную часть желудка. После фиксации зонд проводили через мягкие ткани брюшной стенки и тазовой области и затем с помощью специального инструмента протаскивали под кожей хвоста и выводили наружу. После чего животные помещались в металлические индивидуальные клетки.

Все животные содержались в контролируемых условиях окружающей среды при температуре 20–24 °С и влажности 45–65 %, с режимом освещенности с 8 до 20 часов – свет, с 20 до 8 часов – сумеречное освещение.

В начале экспериментов у всех животных измеряли массу тела. В качестве препарата для подавления секреции соляной кислоты использовался париет (международное непатентованное название рабепразол) - ингибитор протонной помпы. Во время экспериментов в желудочный зонд вводили 0,1 мл раствора париета в дозе 0,14 мг/кг ежедневно, однократно в течение 16 дней. В качестве антибиотика лля селективной леконтаминации грамотрицательной флоры был выбран колистин, который оказывает бактерицидное действие на грамотрицательные бактерии. Колистин начинали вводить после 9 дней приема париета. Раствор колистина (2мл) вводили в желудочный зонд в дозе 100 мг/ кг, ежедневно, однократно. До (фон) и через 2 часа после введения париета измерялся рН содержимого желудка с помощью универсальной лакмусовой индикаторной бумаги. На 17 сутки животных

взвешивали и выводили из эксперимента. После введения летальной дозы наркоза (обеим группам животных) и вскрытия брюшной полости проводили забор содержимого тощей (20 см за связкой Трейтца) и слепой кишок для бактериологического анализа. Также выделяли печень, почки, надпочечники, селезенку, слепую кишку для определения относительной массы органов.

Микробиологическое исследование содержимого тощей и слепой кишок проводилось в соответствии с нормативными документами, принятыми для исследования кала у людей: отраслевым стандартом 91500.11.0004–2003 «Протокол ведения больных. Дисбактериоз кишечника». Были изучены 7 групп микроорганизмов: Staphylococcus spp., Enterococcus spp., Bifidobacterium spp., Lactobacillus spp., Escherichia coli (E.coli), Enterobacter spp., Proteus mirabilis. Количество бактерий в каждом виде выражали в КОЕ/мл.

Статистическая обработка данных проводилась с помощью программы STATISTIKA 6.0. Для каждой группы животных для всех параметров рассчитывали среднее значение, стандартное отклонение, медиану, персентили. В связи с тем, что распределение значений не носили нормальный характер, то данные в окончательном варианте представляли как медиану и персентили - Ме (25;75)% и для статистического анализа использовали непараметрические критерии. При сравнении фоновых значений кислотности содержимого желудка в различные сроки экспериментов (1-16-й дни) применяли непараметрический критерий - ранговый дисперсионный анализ по Фридману. При сравнении значений кислотности содержимого желудка до введения париета со значениями после введения париета с 1-го по 16-й день эксперимента применяли Т-критерий Уилкоксона. При сравнении данных бактериологических исследований и значений относительной массы органов опытной группы с контрольной группой использовали непараметрический U - критерий Манна-Уитни. Статистически значимыми считались значения с p<0,01 и p<0,05.

Результаты исследования и их обсуждение

В первый день эксперимента до введения париета значение рН содержимого желудка составляло 2,5 (2,5; 3), после введения – 5 (4,5; 6), (p<0,05) (рис. 1). Отметим, что уже на 3-й день эксперимента наблюдалось увеличение фонового значения рН содержимого желудка с 2,5 (2,5;3) до 5,5 (5,5; 6), причем данное различие было статистически

значимым по сравнению с 1-м днем (p<0,01). Значения pH до- и после введения париета на 4 день статистически значимо не отличались. На 9-й день у всех животных происходило устойчивое снижение кислотности желудочного сока, с сохранением результатов в последующие дни введений. Таким образом, введение колистина с 10-го по 16-й

Таблица 1.

Содержание различных видов микроорганизмов в тощей и слепой кишке в контрольной группе и в опытной группе, КОЕ/мл, Ме (25; 75)%.

Примечание.

0 – Не обнаружены ни у одного животного

*-p<0,05, отличия статистически значимы в сравнении опытной группы с контрольной группой. При сравнении данных бактериологических исследований опытной группы с контрольной группой использовали непараметрический U-критерий Манна-Уитни

Вид	тощая		слепая		
микроорганизмов	контроль	опыт	контроль	опыт	
Staphylococcus spp.	$0(0;10^3)$	$0(0;10^2)$	$10^{5}(10^{4};10^{5})$	0(0;0)*	
Enterococcus spp	$0(0;10^2)$	$10^3(0;10^6)$	$10^3(10^2;10^4)$	106(105;107)*	
Bifidobacterium spp.	10 ⁵ (10 ⁴ ;10 ⁶)	10 ⁴ (10 ³ ;10 ⁵)	10 ⁶ (10 ⁵ ;10 ⁷)	10 ⁴ (10 ⁴ ;10 ⁵)	
Lactobacillus spp.	10 ³ (10 ² ;10 ⁴)	10 ⁴ (10 ⁴ ;10 ⁵)	$10^{7}(10^{4};10^{7})$	105(105;105)	
E.coli	0(0;0)	0(0;0)	10 ⁴ (10 ³ ;10 ⁶)	0(0;102)	
Enterobacter spp.	0(0;0)	0(0;0)	0	0	
Proteus mirabilis	0	0(0;106)	0(0;0)	0(0;105)	

Таблица 2. Относительная масса органов, Ме (25;75%)

Примечание.

*-p<0,05, отличия статистически значимы в сравнении опытной группы с контрольной группой. При сравнении относительной массы органов опытной группы с контрольной группой использовали непараметрический U- критерий Манна-Уитни.

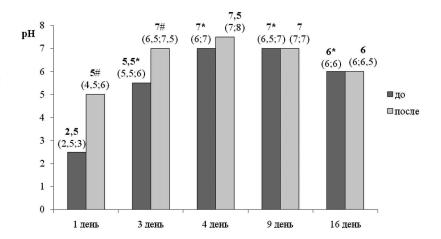

Группа	Относительная масса органов, Ме (25;75%)					
	печень	селезенка	почки	надпочечники	слепая кишка	
Контроль-	1,86	0,18	0,44	0,009	0,62	
ная	(1,80;1,99)	(0,18;0,21)	(0,42;0,45)	(0,009;0,010)	(0,53;0,68)	
Опытная	2,39*	0,19	0,55*	0,020*	0,85*	
	(2,24;2,44)	(0,18;0,20)	(0,53;0,57)	(0,018;0,022)	(0,72;1,03)	

Рисунок 1.

Динамика изменения кислотности содержимого желудка в опытной группе в различные дни эксперимента

Примечания:

- * p<0,01 отличия фоновых значений статистически значимы (1–3 день, 1–4 день, 1–9 день, 1–16 день) ранговый дисперсионный анализ по Фридману;
- # p<0,05 отличия фоновых значений (до-) и после введения париета статистически значимы Т-критерий Уилкоксона.

день эксперимента осуществлялось на фоне гипохлоргидрии.

Данные по бактериологическим исследованиям представлены в таблице 1.

Бактериологические исследования показали, что в контрольной группе у большинства животных в содержимом тощей кишки присутствовали Lactobacillus spp. и Bifidobacterium spp. У двух из пяти животных присутствовали Staphylococcus spp. и Enterococcus spp., у одного животного высеивалась E.coli и Enterobacter spp. При анализе микрофлоры каждого отдельного животного было установлено, что микробиоценоз тощей кишки здоровых животных составлял от 0 до 5 видов бактерий. В содержимом слепой кишки у всех животных присутствовали Staphylococcus spp, E.coli, Bifidobacterium spp. и Lactobacillus spp. У большинства животных высеивались Enterococcus spp. У одного животного из пяти присутствовал Proteus mirabilis. Состав микрофлоры слепой кишки каждого животного составлял до 5 видов микроорганизмов.

В опытной группе после 7-ми суточного введения колистина отмечались следующие изменения. В содержимом тощей кишки статистически незначимо увеличилось количество Enterococcus

spp. и Lactobacillus spp. У двух животных появились Proteus mirabilis. Кроме того, статистически незначимо уменьшилось количество Staphylococcus spp. и Bifidobacterium spp. Таким образом, количественный состав микрофлоры тощей кишки существенно не изменился. Видовое разнообразие микрофлоры тощей кишки у каждого животного также практически не отличалось по сравнению с контролем и составляло от 1 до 5 видов микроорганизмов. В содержимом слепой кишки у большинства животных исчезли Staphylococcus spp. Статистически значимо увеличилось количество Enterococcus spp. Наблюдалась тенденция к увеличению количества Proteus mirabilis и к снижению Lactobacillus spp., Bifidobacterium spp. и E.coli. Видовое разнообразие микрофлоры слепой кишки у каждого животного уменьшилось по сравнению с контролем и составляло от 3 до 5 видов микроорганизмов.

При изучении закономерностей количественного проксимо-дистального градиента микроорганизмов было выявлено, что в контрольной группе количество всех изученных микроорганизмов в просвете увеличивалось в направлении дистальных отделов – от тощей к слепой кишке. В опытной

группе количественный проксимо-дистальный градиент отсутствовал в отношении большинства микроорганизмов за исключением *Enterococcus spp.*

Под влиянием колистина в условиях гипохлоргидрии изменялась относительная масса внутренних

органов (табл. 2). Из таблицы видно, что наблюдалось статистически значимое увеличение относительной массы печени, почек и надпочечников и слепой кишки в опытной группе по сравнению с контролем.

Заключение

Селективная деконтаминация грамотрицательной флоры в условиях гипохлоргидрии приводит к исчезновению количественного проксимо-дистального градиента в отношении большинства микроорганизмов, а также к изменениям в составе микрофлоры слепой кишки, выражающихся в количественном перераспределении различных видов микроорганизмов. В ранее опубликованной работе, нами было показано, что введение париета

здоровым крысам эффективно снижает желудочную кислотопродукцию. При этом наблюдался значительный рост *E.coli* (до $10^7 \, \text{KOE/мл}$) в тощей кишке [8]. В настоящем исследовании количественный состав микрофлоры тощей кишки соответствовал здоровым животным. Таким образом, введение колистина на фоне гипохлоргидрии, вызванной париетом, защищает от избыточной колонизации микрофлорой проксимальные отделы тонкой кишки.

Литература

- Gasbarrini A., Lauritano E. C., Garcovich M., Sparano L., Gasbarrini G. New insights into the pathophysiology of IBS: intestinal microflora, gas production and gut motility // Eur. Rev. Med. Pharmacol. Sci. – 2008. – Vol.12, Suppl. 1. – P. 111–117.
- Lo W., Chan W. W. Proton pump inhibitor use and the risk of small intestinal bacterial overgrowth: a meta-analysis // Clin. Gastroenterol. Hepatol. – 2013. – Vol.11, N.5.-P. 483–490.
- Скворцов В. В. Дисбиоз кишечника и антибиотик-ассоциированная диарея // Лечащий врач. – 2008. – № 2.-С. 43-47.
- 4. Бельмер С. В. Антибиотик-ассоциированный дисбактериоз кишечника // Русский медицинский журнал. – 2004. – № 3. – С. 148–151.

- Ohya T., Sato S. Effects of dietary antibiotics on intestinal microflora in broiler chickens // Natl. Inst. Anim. Health Q (Tokyo). –1983. – Vol.23, N.2. – P. 49–60.
- Beringer P. The clinical use of colistin in patients with cystic fibrosis // Curr. Opin. Pulm. Med.-2001. – Vol.7, N.6. – P. 434–440.
- Тропская Н. С., Шашкова И. Г., Черненькая Т. В., Попова Т. С. Влияние колистина на электрическую активность тощей кишки и видовой состав микрофлоры кишечника // Биомедицина, № 2. – 2016, – C. 52–59.
- Тропская Н. С., Шашкова И. Г., Черненькая Т. В., Попова Т. С., Капанадзе Г. Д. Влияние кислотности желудочного сока на микрофлору кишечника // Биомедицина, 2016 - № 4. - С. 92–98.