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Резюме

Цель. комплексная оценка влияния штаммов Lactobacillus acidophilus LA-5 и Bifi dobacterium animalis subsp. lactis BB-12 
на микрофлору детского желудочно- кишечного тракта при дисбактериозе на модели искусственного ЖКТ человека.

Материалы и методы. Исследование проводилось на автоматизированной системе искусственного желудочно- 
кишечного тракта с тремя реакторами, моделирующими желудок, двенадцатиперстную и толстую кишку. Микробио-
ценоз формировали на основе образцов кала ребенка с дисбактериозом III степени, после чего в течение 14 дней 
вводили пробиотический препарат Линекс Форте. Анализ состава микрофлоры проводили методом ПЦР в реальном 
времени, метаболическую активность оценивали по содержанию органических кислот методом ГХ–МС.

Результаты: Комбинация штаммов Lactobacillus acidophilus LA-5 и Bifi dobacterium animalis subsp. lactis BB-12 продемон-
стрировала выраженное корригирующее воздействие на дисбиотические нарушения кишечной микробиоты в модели 
искусственного ЖКТ. Зарегистрировано восстановление популяций лактобактерий до 9,0 lg КОЕ/мл и бифидобактерий 
до физиологической нормы, элиминация условно- патогенных микроорганизмов (Citrobacter spp., C. perfringens) к 7–9 
суткам, нормализация соотношения Bacteroides spp. / F. prausnitzii с 74,1 до оптимального диапазона 16,9–38,8. Хрома-
тографический анализ выявил специфические паттерны метаболической активности штаммов с восстановлением 
нормального профиля органических кислот, включая накопление молочной и янтарной кислот.

Заключение: Исследование подтвердило комплексное положительное воздействие комбинации штаммов LA-5 и BB-12 
на основные показатели кишечного микробиома при дисбиотических нарушениях с формированием выраженного 
пролонгированного эффекта. Сохранение достигнутых результатов после завершения введения препарата свиде-
тельствует о формировании стабильной популяции пробиотических микроорганизмов, что имеет принципиальное 
клиническое значение для достижения долгосрочного терапевтического эффекта.
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Summary

Objective: To conduct a comprehensive assessment of the eff ect of Lactobacillus acidophilus LA-5 and Bifi dobacterium animalis 
subsp. lactis BB-12 strains on the gut microbiota of a child with dysbiosis using a human artifi cial gastrointestinal (GI) tract model.

Materials and Methods: The study was conducted using an automated, three- reactor artifi cial gastrointestinal tract system 
simulating the stomach, duodenum, and large intestine. The microbial community was formed from fecal samples of a child 
with third- degree dysbiosis. The probiotic product Linex Forte was then administered for 14 days. Microbiota composition 
was analyzed by real-time PCR, and metabolic activity was assessed by the content of organic acids using GC–MS (gas chro-
matography–mass spectrometry).

Results: The combination of Lactobacillus acidophilus LA-5 and Bifi dobacterium animalis subsp. lactis BB-12 strains demonstrated 
a pronounced corrective eff ect on dysbiotic disorders of the gut microbiota in the artifi cial GI model. The restoration of lac-
tobacilli populations to 9.0 log CFU/mL and bifi dobacteria to physiological norms was recorded. Elimination of opportunistic 
microorganisms (Citrobacter spp., C. perfringens) was observed by days 7–9. The Bacteroides spp. / F. prausnitzii ratio normalized 
from 74.1 to the optimal range of 16.9–38.8. Chromatographic analysis revealed specifi c patterns of metabolic activity of the 
strains with the restoration of a normal organic acid profi le, including the accumulation of lactic and succinic acids.

Conclusion: The study confi rmed the comprehensive positive impact of the LA-5 and BB-12 strain combination on the key 
parameters of the gut microbiome in dysbiotic conditions, resulting in a signifi cant prolonged eff ect. The persistence of the 
achieved results after the completion of the product's administration indicates the formation of a stable population of probiotic 
microorganisms, which is of fundamental clinical importance for achieving a long-term therapeutic eff ect.

Keywords: dysbiosis; gut microbiota; Lactobacillus acidophilus; Bifi dobacterium animalis; Linex® Forte; artifi cial gastrointestinal 
tract; childhood
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Введение

Микробиоценоз желудочно- кишечного трак-
та играет критическую роль в физиологических 
процессах организма. Одной из ключевых функ-
ций является участие в метаболических процессах. 
Микроорганизмы кишечника синтезируют ряд ви-
таминов, включая витамины группы B и витамин K, 
что особенно важно в условиях их недостаточного 

поступления с пищей [1]. Кишечная микробиота 
ферментирует неперевариваемые пищевые волокна 
с образованием короткоцепочечных жирных кислот 
(КЦЖК) – ацетата, пропионата и бутирата. Данные 
метаболиты служат важным источником энергии для 
колоноцитов, регулируют моторику кишечника и об-
ладают противовоспалительными свой ствами [2].
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Микробиота играет фундаментальную роль 
в формировании иммунной системы. Колонизация 
кишечника способствует созреванию лимфоид-
ной ткани GALT, развитию толерантности к ком-
менсальным микроорганизмам и формированию 
иммунного ответа на патогены [3]. Нормальная 
микрофлора обеспечивает колонизационную рези-
стентность, препятствуя размножению патогенных 
микроорганизмов посредством конкуренции за пи-
тательные вещества и продукции антимикробных 
веществ [4]. Установлена роль микробиома в регу-
ляции функций ЦНС через ось «кишечник-мозг». 
Микроорганизмы продуцируют нейротрансмитте-
ры, включая серотонин, ГАМК, дофамин, влияя на 
поведение, настроение и когнитивные функции [5, 6, 
7]. Это позволяет рассматривать хозяина и населяю-
щие его микроорганизмы как «суперорганизм» [8].

Дисбактериоз (дисбиоз) представляет собой на-
рушение качественного и количественного соста-
ва нормальной микрофлоры, характеризующееся 
снижением числа облигатных представителей ми-
кробиоценоза и увеличением условно- патогенных 
микроорганизмов [9]. Этиологическими факто-
рами являются антибактериальные препараты, 
стресс, неправильное питание, инфекционные 
заболевания и иммунодефицитные состояния. 
Клинические проявления включают диарею, запо-
ры, метеоризм, аллергические реакции, снижение 
иммунитета [10]. Нарушения микробиоты связаны 
с воспалительными заболеваниями кишечника, 
диабетом 1-го типа и аллергией [11].

Пробиотики определяются как живые микро-
организмы, которые при введении в адекватных 
количествах оказывают благоприятное воздей-
ствие на здоровье хозяина [12]. Механизмы их 
действия включают конкуренцию с патогенами 
за адгезию и питательные вещества, продукцию 
антимикробных веществ, стимуляцию иммуни-
тета и улучшение барьерной функции кишечника 
[13]. Одним из часто применяемых комбинирован-
ных пробиотических препаратов является Линекс® 
Форте, содержащий Lactobacillus acidophilus LA-5® 

и  Bifidobacterium animalis subsp. lactis BB-12®. 
Данные штаммы обладают доказанной безопас-
ностью и эффективностью, подтвержденной в кли-
нических исследованиях [14]. Благодаря продукции 
органических кислот и бактериоцина CH5 штамм L. 
acidophilus LA-5 обладает выраженным антагони-
стическим действием в отношении патогенной ми-
крофлоры. Совместное применение этих штаммов 
повышает продукцию противовоспалительного 
цитокина IL-10, обусловливая развитие гумораль-
ного иммунного ответа [15].

Изучение микробиоты кишечника и оценка эф-
фективности пробиотических препаратов требует 
использования адекватных экспериментальных 
моделей. Модели in vivo включают эксперимен-
тальные исследования на лабораторных животных 
и клинические исследования на людях. Несмотря 
на их физиологическую релевантность, данные 
модели характеризуются высокой стоимостью, 
этическими ограничениями и вариабельностью 
результатов. Альтернативой дорогостоящим ис-
следованиям in vivo служат системы искусствен-
ного ЖКТ, включая модель TNO (TIM) [16], си-
мулятор микробиоты кишечника SHIME® [17] 
В НИЛ «Центр Агробиотехнологии» ФГБОУ ВО 
ДГТУ разработан программно- аппаратный ком-
плекс, эквивалентный моделям искусственного 
кишечника TIM-2 и SHIME. Модульная система 
желудочно- кишечного тракта получена с при-
менением технологий биологической 3D печати 
и имитирует системы пищеварения [https://ckp-rf.
ru/catalog/usu/3559948/]. Данные модели обеспе-
чивают контролируемые условия эксперимента, 
воспроизводимость результатов и возможность 
изучения динамических изменений микробиоце-
ноза в реальном времени.

Целью настоящего исследования являлась ком-
плексная оценка влияния штаммов Lactobacillus 
acidophilus LA-5 и Bifi dobacterium animalis subsp. 
lactis BB-12 на микрофлору детского желудочно- 
кишечного тракта при дисбактериозе на модели 
искусственного ЖКТ человека.

Материалы и методы

Дизайн исследования включал следующие этапы:
1. Моделирование микробиоценоза искусственно-

го желудочно- кишечного тракта (ИЖКТ), соот-
ветствующего состоянию дисбактериоза.

2. Введение пробиотических микроорганизмов 
в систему в течение 14 дней с контролем состава 
микрофлоры.

3. Наблюдение за составом микрофлоры в течение 
14 суток после завершения введения пробио-
тиков.

Исследование проводили с использованием ав-
томатизированной системы «Микробиологический 
комплекс моделирования процессов в желудочно- 
кишечном тракте» [https://ckp-rf.ru/catalog/
usu/3559948/], адаптировав ее параметры к по-
ставленным задачам исследования. В работе ис-
пользовали три реактора, имитирующие желудок, 
двенадцатиперстную кишку (ДПК), толстую кишку 

(ТК). Полезный объем реакторов составлял: желу-
док – 50 мл, ДПК – 200 мл и ТК – 300 мл. Система 
автоматически поддерживает постоянную темпе-
ратуру 37 °C, анаэробные условия путем подачи 
азота, рН содержимого реактора- желудка на уровне 
3,0, реактора- ДПК – 6,5–6,8, реактора- ТК – 6,8–7,0.

Для имитации желудочного сока и кишечного 
химуса использовали концентрации ферментов 
и желчных солей в соответствии с рекомендациями 
INFOGEST [18]. Состав искусственного желудочно-
го сока: 50 мМ NaCl, пепсин свиной сывороточный 
(2000 U/мл), рН доводили до 3,0 добавлением 0,5 М 
HCl. Экспозиция в реакторе- желудок составляла 
120 минут, после чего содержимое перекачивалось 
в реактор- ДПК один раз в сутки.

Искусственный дуоденальный химус готовили 
на основе 1% мясо-пептонного бульона с добавле-
нием 0,5% лактозы, панкреатина свиного (2000 U/
мл липазной активности) и таурохолата натрия 
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(1,5 мг/мл). рН поддерживали на уровне 6,5–6,8 
добавлением 1М NaHCO₃. Скорость перекачки со-
держимого реактора- ДПК в реактор- ТК составляла 
20–22 мл каждые 4 часа.

Для реактора- ТК использовали буферную среду 
следующего состава: 100 мМ NaCl, 5 мМ K₂HPO₄, 5 
мМ KH₂PO₄, 100 мМ NaHCO₃, 0,5 мМ MgCl₂, 1,5 мМ 
CaCl₂, 0,05% L-цистеин- HCl, pH 6,8–7,0. Каждые 24 
часа проводили сброс 50–60% объема содержимого 
ТК с последующим восполнением за счет перекачки 
из ДПК и добавления буферной среды.

Для создания модели микробиоценоза исполь-
зовали образцы кала от ребенка 6 лет с установ-
ленным дисбактериозом III степени (значительное 
снижение титров Bifi dobacterium spp. и Lactobacillus 
spp., присутствие условно- патогенных микроорга-
низмов в высоких титрах**). Исследование прово-
дили с соблюдением принципов биомедицинской 
этики с получением информированного согласия. 
Проведение исследования одобрено локальным 
этическим комитетом ДГТУ (протокол № 26 от 
17.09.2024).

Для подготовки фекальной взвеси биологиче-
ский материал гомогенизировали в стерильном 
искусственном химусе в соотношении 1:10, филь-
тровали через нейлоновый фильтр (150 мкм), опре-
деляли общую бактериальную массу методом ПЦР. 
Фекальную взвесь вносили однократно в начале 
эксперимента: в реактор- ДПК до концентрации 
Lactobacillus spp. 10² КОЕ/мл, Bifi dobacterium spp. 
5×10³ КОЕ/мл, в реактор- ТК – до 10¹² КОЕ/мл об-
щей бактериальной массы [19]. Стабильность ми-
кробного сообщества оценивали по коэффициенту 
вариации (CV ≤ 20%) основных бактериальных 
популяций [20].

В качестве пробиотиков использовали препарат 
Линекс® Форте, содержащий лиофилизированные 
штаммы Lactobacillus acidophilus (CHR. HANSEN 
LA-5®) и Bifi dobacterium animalis subsp. lactis (CHR. 
HANSEN BB-12®) в количестве не менее 2×10⁹ КОЕ 
на капсулу. После стабилизации микробиоценоза 
в реакторах осуществляли ежедневное введение 

одной капсулы Линекс Форте в реактор- желудок 
в течение 14 дней. Отбор проб производили: из 
реактора- желудка через 2 часа после введения 
пробиотиков, из реактора- ДПК – через 4 часа, из 
реактора- ТК – 1 раз в сутки. В качестве контроля 
использовали дублирующие реакторы без введе-
ния препарата.

Качественный и количественный анализ ми-
кробиоценоза проводили методом ПЦР в  ре-
жиме реального времени с использованием на-
бора «Колонофлор-16 (премиум)» («Альфалаб», 
Россия). Выделение ДНК осуществляли набо-
ром ДНК-сорб- В (ФБУН ЦНИИ Эпидемиологии, 
Россия). ПЦР проводили на амплификаторе 
ДТ-96 (ДНК-Технология, Россия). Для микробио-
логического исследования посевы производи-
ли на ГРМ-агар, Бифидум- среду, MRS-агар, агар 
Эндо, Колумбийский агар, Стафилококкагар, 
среду Вильсон- Блера (ФБУН ГНЦ ПМБ, Россия). 
Посевы инкубировали при +37 °C. Степень дис-
биотических изменений определяли согласно ОСТ 
91500.11.0004–2003.

Метаболическую активность оценивали по со-
держанию органических кислот (молочной, янтар-
ной, уксусной) методом ГХ–МС на системе Agilent 
7890–5977. Подготовка образцов включала экс-
тракцию метанолом, дериватизацию метоксами-
ном и BSTFA+TMCS. Хроматографический анализ 
проводили на колонке Hp-5 MS в режиме полного 
сканирования (50–600 m/z). Идентификацию ме-
таболитов осуществляли по библиотеке NIST 17 
(соответствие >80 баллов), количественное опре-
деление – по калибровочным кривым в диапазоне 
2,0–100,0 мкг/мл.

Статисти ческ у ю обработк у проводи ли 
в Microsoft Excel 2010, IBM SPSS Statistics 26.0. 
Данные представлены как среднее ± стандартное 
отклонение. Нормальность распределения прове-
ряли по критерию Шапиро- Уилка. Межгрупповые 
различия оценивали t-тестом или критерием 
Манна- Уитни. Различия считали значимыми при 
p<0,05.

Результаты

При анализе состава кишечной микробиоты ис-
ходного образца от донора выявлены значитель-
ные нарушения качественного и количественного 
состава микрофлоры. Общая бактериальная мас-
са составила 13,3 lg КОЕ/г, превышая референс-
ный интервал (11–13 lg КОЕ/г) в 2 раза. Среди 
облигатной микрофлоры отмечено критическое 
снижение лактобактерий до 5,85 lg КОЕ/г (норма 
7–8 lg КОЕ/г) и бифидобактерий до 7,6 lg КОЕ/г 
(норма 9–10 lg КОЕ/г). Количество типичных ки-
шечных палочек находилось в пределах нормы 
(7,9 lg КОЕ/г). Наиболее критичным нарушением 
являлось обнаружение Citrobacter spp. в концен-
трации 12,48 lg КОЕ/г, превышающей допусти-
мые значения (≤4 lg КОЕ/г) на восемь порядков. 
Также зарегистрировано превышение нормы для 
Akkermansia muciniphila (12,3 lg КОЕ/г при норме 
≤11 lg КОЕ/г) и повышение содержания бакте-
роидов (13,3 lg КОЕ/г при норме 9–12 lg КОЕ/г). 

Культуральное исследование подтвердило нали-
чие сульфитредуцирующих клостридий (5 lg КОЕ/
мл). Патогенные микроорганизмы не обнаружены. 
На основании полученных данных диагностиро-
ван дисбактериоз кишечника 3 степени тяжести, 
характеризующийся условно- патогенными ми-
кроорганизмами в критически высоких титрах, 
снижением популяций лактобактерий и бифидо-
бактерий и избыточный рост отдельных предста-
вителей нормофлоры.

При разработке модели микробиоценоза ис-
пользовались критерии диагностики дисбакте-
риоза согласно ОСТ 91500.11.0004–2003, которые 
включают снижение облигатной микрофлоры 
(бифидобактерий, лактобацилл) и увеличение 
численности условно- патогенных микроорга-
низмов. В результате внесения биологического 
материала в реакторы и стабилизации в течение 
двух недель был сформирован микробиоценоз, 
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соответствующий дисбиотическому состоянию 
ЖКТ. Реактор- ДПК демонстрировал бактери-
альную нагрузку до 5,7 lg КОЕ/мл, соответству-
ющую синдрому избыточного бактериального 
роста. Микробиологические характеристики 
реактора- ТК успешно воспроизводили исходные 
дисбиотические нарушения: сохранялся дефицит 
Lactobacillus spp. и Bifi dobacterium spp., наблюдались 

повышенные концентрации Bacteroides spp., F. 
prausnitzii, A. muciniphila и условно- патогенных 
микроорганизмов. Отношение Bacteroides spp. 
к F. prausnitzii составило 74,1, демонстрируя сме-
щение в сторону доминирования бактероидов. 
Сформированные модели микробиоценоза в реак-
торах ДПК и ТК были использованы для изучения 
влияния пробиотиков на микробиом ЖКТ ребенка.

Оценка жизнеспособности пробиотических штаммов 
в условиях модели искусственных желудка и ДПК
Капсулы пробиотического препарата вносили 
в реактор- желудок, нарушение оболочки капсулы 
фиксировали через 15–20 минут. Начальное коли-
чество жизнеспособных лактобактерий в капсулах 
составляло 10,65 lg КОЕ/мл. После 2-часовой экс-
позиции в модели желудка количество составило 
(7,38±0,11) lg КОЕ/мл, снизившись на 1,27 логариф-
мических порядка.

Исходное содержание бифидобактерий соответ-
ствовало заявленному в инструкции. После экс-
позиции в модели желудка концентрация жизне-
способных бифидобактерий составила (8,95±0,07) 
lg КОЕ/мл, снизившись на 1,75 логарифмических 
порядка. Исходные концентрации в реакторах- ДПК 
составляли: Lactobacillus spp. (2,7±0,1) lg КОЕ/мл, 
Bifi dobacterium spp. (2,8±0,1) lg КОЕ/мл. Введение про-
биотиков в первые сутки индуцировало увеличение 
лактобацилл в опытном реакторе до 6,3 lg КОЕ/мл.

На протяжении периода введения препарата 
концентрация Lactobacillus spp. в опытном реакторе 

поддерживалась в диапазоне 6,0–7,6 lg КОЕ/мл, 
достигая максимума 7,6 lg КОЕ/мл на 13–14 сутки. 
В контрольном реакторе концентрация колебалась 
в пределах 1,85–2,78 lg КОЕ/мл. После завершения 
введения препарата концентрация лактобацилл 
снижалась с 7,6 lg КОЕ/мл (14 сутки) до 5,85 lg КОЕ/
мл (28 сутки), превышая контрольные значения 
в 10³ раз.

Для бифидобактерий в опытном реакторе на-
блюдалась положительная динамика с достижени-
ем максимума 3,96 lg КОЕ/мл к 9 суткам. Средняя 
концентрация в течение активной терапии со-
ставляла 3,81 lg КОЕ/мл. Характерной особенно-
стью была волнообразная динамика роста попу-
ляции. В контрольном реакторе концентрация 
Bifi dobacterium spp. снижалась с 2,81 lg КОЕ/мл 
до 2,43 lg КОЕ/мл к 14 суткам. После завершения 
терапии концентрация в опытной группе стаби-
лизировалась на уровне 2,60 lg КОЕ/мл (28 сутки), 
превышая контрольные показатели в 2 раза.

Влияние пробиотического препарата Линекс Форте 
на микробиоценоз в условиях модели толстой кишки
Исходное состояние микробиоценоза в ТК модель-
ной системы характеризовалось выраженными 
дисбиотическими нарушениями. Концентрация 
лактобактерий составляла лишь 5,2 lg КОЕ/мл, что 
значительно ниже референсных значений 7,0–8,0 
lg КОЕ/мл, подтверждая наличие глубокого дис-
бактериоза.

Введение пробиотиков индуцировало выражен-
ные позитивные изменения в составе нормальной 
микрофлоры (табл. 1). Популяция Lactobacillus 
spp. демонстрировала восстановление: уже к 4-м 
суткам концентрация достигала нижней границы 
нормы (7,8 lg КОЕ/мл), продолжая прогрессивно 
увеличиваться до пикового значения 9,0 lg КОЕ/

Показатель Группа
Период 1–14 дни 
(M±SD), lg копий 

ДНК/мл

Период 15–28 дни 
(M±SD), lg копий 

ДНК/мл
Характер изменений

Lactobacillus spp.
Контроль 4.89±0.56 3.93±0.14 Значимое увеличение в опытном 

реакторе, p<0.001Опыт 7.85±1.28 7.78±0.44

Bifi dobacterium spp.
Контроль 7.99±0.33 7.93±0.05 Значимое увеличение в опытном 

реакторе, p<0.001Опыт 8.89±0.52 9.35±0.07

Bacteroides spp.
Контроль 13.13±0.38 13.29±0.13

Различия не значимы, p=0.982
Опыт 13.16±0.47 13.26±0.09

Faecalibacterium 
prausnitzii

Контроль 11.39±0.04 11.40±0.03 Значимое увеличение в опытном 
реакторе, p<0.001Опыт 11.84±0.27 11.74±0.04

Akkermansia 
muciniphila

Контроль 11.73±0.23 12.14±0.08 Значимое снижение во втором 
периоде, p<0.001Опыт 11.56±0.31 11.79±0.31

Clostridium 
perfringens

Контроль 9.37±1.42 6.25±0.88 Полная элиминация в опытном 
реакторе, p<0.001Опыт 7.05±3.89 0.00±0.00

Citrobacter spp.
Контроль 8.35±0.54 7.83±0.04 Полная элиминация в опытном 

реакторе, p<0.001Опыт 5.45±3.96 0.00±0.00

Acinetobacter spp.
Контроль 7.24±0.37 7.79±0.13

Различия не значимы, p=0.154
Опыт 7.31±0.60 7.35±0.24

Streptococcus spp.
Контроль 8.59±0.11 8.79±0.15 Значимое снижение в опытном 

реакторе, p<0.05Опыт 8.42±0.40 8.60±0.12

Таблица 1.
Динамика концен-
трации микро-
биоты в модели 
толстой кишки
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Введение в ИЖКТ пробиотиков После окончания
введения пробиотиков

Реактор – ТК (контроль)
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Рисунок 2.
Динамика 
концентрации 
Bifi dobacterium 
spp. в модели 
толстой кишки
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Рисунок 1.
Динамика 
концентрации 
Lactobacillus spp. 
в модели толстой 
кишки

мл к 14-м суткам (рис. 1). В противоположность 
этому, контрольная группа показывала неуклон-
ную деградацию с финальным снижением до 4,3 
lg КОЕ/мл. Аналогичную позитивную динамику 
продемонстрировала популяция Bifi dobacterium 
spp. Начиная с субнормальных значений 8,3 lg КОЕ/
мл, концентрация бифидобактерий прогрессивно 
возрастала, достигая оптимальных показателей 
9,5 lg КОЕ/мл к завершению курса введения про-
биотика (рис. 2). Контрольная группа сохраня-
ла стабильно низкие концентрации в диапазоне 
7,9–8,3 lg КОЕ/мл. После прекращения введения 
препарата (15–28 сутки) наблюдалось формирова-
ние устойчивого микробиологического баланса. 
Концентрация лактобактерий стабилизировалась 
на уровне 7,5 lg КОЕ/мл, а бифидобактерий – 9,3 lg 
КОЕ/мл, что соответствует нормальным физиоло-
гическим параметрам.

Общая бактериальная масса в опытной груп-
пе претерпевала характерные флуктуации, от-
ражающие процессы активной реорганизации 
микробного сообщества. Наиболее выраженные 
изменения регистрировались в период с 4-х по 

7-е сутки: от максимального пика 13,7 lg КОЕ/мл 
до минимального значения 12,9 lg КОЕ/мл, что 
свидетельствовало об интенсивных конкурентных 
взаимодействиях между различными бактериаль-
ными популяциями. К завершению наблюдения 
система достигла стабильного гомеостатического 
состояния на уровне 13,0 lg КОЕ/мл.

Препарат продемонстрировал выраженную 
антагонистическую активность в  отношении 
условно- патогенной микрофлоры. Citrobacter spp. 
подвергся полной элиминации уже к 7-м суткам 
при исходной концентрации 8,9 lg КОЕ/мл (рис. 3). 
Clostridium perfringens показал аналогичную дина-
мику с полным исчезновением к 9-м суткам (рис. 4). 
В контрольных образцах данные микроорганизмы 
персистировали в высоких концентрациях.

Концентрация Acinetobacter spp. в обеих груп-
пах исходно превышала референсные значения 
(≤6,0 lg КОЕ/мл), составляя 6,9 lg КОЕ/мл (рис. 5). 
В опытной группе наблюдалась двухфазная ди-
намика: пиковое увеличение до 8,3 lg КОЕ/мл на 
5-е сутки с последующим снижением до 6,7–6,9 
lg КОЕ/мл к 13–14-м суткам. После завершения 
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Введение в ИЖКТ пробиотиков После окончания
введения пробиотиков
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Рисунок 3.
Динамика концен-
трации Citriobacter 
spp. в модели 
толстой кишки
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Рисунок 4.
Динамика концен-
трации Clostridium 
perfringens в моде-
ли толстой кишки

Введение в ИЖКТ пробиотиков После окончания
введения пробиотиков
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Рисунок 5.
Динамика 
концентрации 
Acinetobacter spp. 
в модели толстой 
кишки
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терапии концентрация возрастала до 7,3 lg КОЕ/мл. 
В контрольной группе регистрировались стабильно 
высокие концентрации 7,0–7,7 lg КОЕ/мл с про-
грессивным ростом до 8,0 lg КОЕ/мл к 27-м суткам.

Популяция Streptococcus spp. в опытной группе 
демонстрировала выраженную супрессию в период 
активной терапии с минимальными значениями 
7,8 lg КОЕ/мл на 8-е и 10-е сутки (рис. 6). После 
завершения введения препарата концентрация 
стабилизировалась в диапазоне 8,3–8,9 lg КОЕ/
мл. Контрольная группа характеризовалась про-
грессивным ростом с достижением 9,0 lg КОЕ/мл 
к концу наблюдения, что в десять раз превышает 
референсную норму.

Динамика резидентного микроорганизма 
Akkermansia muciniphila отражала сложные адап-
тационные процессы (рис. 7). В опытной группе 
наблюдалось выраженное снижение с максималь-
ных значений 11,85–11,95 lg КОЕ/мл до минимума 
11,0 lg КОЕ/мл к 7-м суткам, что свидетельствовало 
о конкурентном взаимодействии с пробиотически-
ми штаммами. После прекращения терапии проис-
ходило восстановление популяции до 12,04 lg КОЕ/

мл. В контрольной группе концентрация стабильно 
возрастала до 12,25 lg КОЕ/мл, значительно пре-
вышая физиологические нормы в обеих группах.

Соотношение Bacteroides spp. / Faecalibacterium 
prausnitzii служит важным диагностическим мар-
кером состояния кишечной экосистемы, отражая 
баланс между условно- патогенными и функцио-
нально значимыми представителями микробио-
ценоза.

Концентрация Bacteroides spp. в модельной систе-
ме исходно составляла 13,3 lg КОЕ/мл, превышая 
референсные значения 9,0–12,0 lg КОЕ/мл. В опыт-
ной группе наблюдалось выраженное корриги-
рующее воздействие препарата с минимальными 
значениями 12,3 lg КОЕ/мл на 11-е сутки и 12,6 lg 
КОЕ/мл на 7-е сутки. После завершения терапии 
концентрация стабилизировалась на уровне 13,0 lg 
КОЕ/мл. Контрольная группа сохраняла стабильно 
повышенные показатели 13,0–13,8 lg КОЕ/мл.

Популяция F. prausnitzii в опытной группе де-
монстрировала выраженный пролиферативный 
ответ с пиковыми значениями 12,3 lg КОЕ/мл на 
4-е сутки при исходных 11,4 lg КОЕ/мл. После 
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кишки



143

экспериментальная гастроэнтерология | experimental gastroenterology

завершения терапии концентрация стабилизиро-
валась на уровне 11,7 lg КОЕ/мл, что превышало 
исходные референсные параметры. В контрольной 
группе показатели оставались стабильными в диа-
пазоне 11,3–11,5 lg КОЕ/мл.

Соотношение Bacteroides spp. / F. prausnitzii 
в опытной группе демонстрировало выраженную 
позитивную динамику (рис. 8). Исходное патоло-
гическое значение 74,1 прогрессивно снижалось, 
достигая оптимального минимума 16,9 на 9-е сутки, 
что свидетельствовало о значительном улучше-
нии функционального статуса микробиоценоза. 
После завершения терапии соотношение стаби-
лизировалось в референсном диапазоне 19,2–38,8, 
указывая на формирование более сбалансирован-
ного микробного сообщества. Контрольная группа 
характеризовалась критическими флуктуациями 
показателя от 13,6 до 304,3, значительно превыша-
ющими верхнюю границу нормы (100), что отража-
ло прогрессирующую дисфункцию микробиоцено-
за с преобладанием условно- патогенных форм над 
функционально значимыми популяциями.

С целью определения метаболической активно-
сти микроорганизмов препарата «Линекс» были 
отобраны пробы реакционной среды на 1-е, 7-е 
и 14-е сутки эксперимента и подвергнуты изучению 
методом газовой хроматографии.

Хроматографические исследования показали 
наличие от 4 до 6 органических кислот в пробах 

обеих групп при культивировании в условиях 
имитации ДПК и толстого кишечника. В исходной 
пробе преобладали аминокислоты: валин, изолей-
цин, фенилаланин и глицин. При культивировании 
в имитаторе ДПК аминокислоты также превалиро-
вали, при этом в контрольных пробах на 7-е и 14-е 
сутки доминировали лейцин и аланин, появлялись 
короткоцепочечные жирные кислоты (бутановая 
и пентановая). Под влиянием Линекса в условиях 
ДПК наблюдалась нормализация качественного 
состава кислот с приближением к исходной пробе 
и преобладанием аминокислот.

В условиях имитации толстого кишечника карти-
на кардинально изменялась: в наибольших количе-
ствах выявлялись КЦЖК (бутановая и пентановая) 
и их производные, содержание аминокислот сни-
жалось. В контрольных пробах на 14-е сутки пре-
обладала 3-метилбутановая кислота. Под влиянием 
Линекса также доминировали КЦЖК, но на 14-е сут-
ки превалировали бутановая и пентановая кислоты.

Для объективной оценки метаболической ак-
тивности штаммов Lactobacillus acidophilus (LА-5) 
и Bifi dobacterium animalis subsp. lactis (BB-12) было 
проведено количественное определение молоч-
ной, уксусной и янтарной кислот как специфи-
ческих маркеров их активности. Полученные ре-
зультаты представлены в табл. 2. Наибольший 
интерес представляла молочная кислота, кото-
рая под влиянием Линекса в условиях имитатора 
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Рисунок 8.
Динамика соотно-
шения Bacteroides 
spp./F. prausnitzii 
в модели толстой 
кишки

Условия 
культивирования
микробиоты

Исследуемые группы

Исходная 
проба

Контроль Пробиотики
7-е сутки 14-е сутки 1-е сутки 7-е сутки 14-е сутки

Молочная кислота, мМ
Реактор- ДПК

0,50±0,03
0,46±0,03 0,48±0,03 нпко 13,82±0,77*/** 6,76±0,42 */**

Реактор- ТК 0,47±0,02 нпко нпко 0,57±0,4 0,47±0,03
Янтарная кислота, мМ

Реактор- ДПК
нпко

нпко нпко нпко 0,73±0,05 */** 0,35±0,02 */**
Реактор- ТК нпко нпко нпко 0,45±0,03 нпко

Уксусная кислота, мМ
Реактор- ДПК

0,75±0,05
3,18±0,18* 3,67±0,27* 1,60±0,08* 1,38±0,07 */** 3,15±0,25 */**

Реактор- ТК 3,92±0,21* 4,90±0,33 */** 1,81±0,12* 2,27±0,15* 5,30±0,31 */**

Таблица 2.
Содержание 
некоторых орга-
нических кислот 
в исследуемых 
пробах

Примечания:
* отличия достовер-
ны относительно 
исходных данных 
(p<0,05);

** отличия досто-
верны относитель-
но предыдущей 
временной точки 
(p<0,05).
ДПК – двенадца-
типерстная кишка, 
ТК – толстая кишка, 
нпко – нижний пре-
дел количествен-
ного определения 
(<10 мкг/мл).



144

экспериментальная и клиническая гастроэнтерология | № 239 (7) 2025 experimental & clinical gastroenterology | № 239 (7) 2025

ДПК показала максимальное накопление на 7-е 
сутки с последующим снижением к 14-м суткам, 
при этом оставаясь значительно выше исходного 
уровня. В условиях толстого кишечника измене-
ния были незначительными. Янтарная кислота 
обнаруживалась исключительно в группе Линекса, 
что подтверждает специфическую метаболическую 
активность штамма ВВ-12. Максимальные кон-
центрации отмечены в условиях ДПК на 7-е сутки 

с последующим достоверным снижением. Уксусная 
кислота была выявлена во всех пробах и показала 
значительное накопление как в контрольных, так 
и в опытных группах, особенно в условиях толстого 
кишечника. Отсутствие статистических различий 
между контролем и группой Линекса на 14-е сут-
ки позволяет предположить, что основной вклад 
в накопление данной кислоты внесла микрофлора 
исходной пробы.

Обсуждение результатов

Результаты проведенного исследования демонстри-
руют выраженное корригирующее воздействие 
комбинации штаммов Lactobacillus acidophilus LA-5 
и Bifi dobacterium animalis subsp. lactis BB-12 на дис-
биотические нарушения кишечной микробиоты 
в условиях модели искусственного ЖКТ.

Исходное состояние микробиоценоза характери-
зовалось классическими признаками дисбактерио-
за 3 степени тяжести со снижением лактобактерий 
и бифидобактерий, и критическим доминирова-
нием условно- патогенной флоры, в частности 
Citrobacter spp., и выраженным дефицитом облигат-
ных анаэробов. Подобные нарушения типичны для 
детей с функциональными расстройствами ЖКТ 
и являются предиктором развития воспалитель-
ных заболеваний кишечника [21, 22]. Превышение 
концентрации Akkermansia muciniphila может от-
ражать компенсаторную реакцию на воспалитель-
ные процессы в кишечнике, что согласуется с дан-
ными исследователей о двой ственной роли данного 
микроорганизма при различных патологических 
состояниях [23, 24].

Выживаемость исследуемых штаммов в кис-
лых условиях модели желудка (снижение на 1,27 
и 1,75 логарифмических порядков для L. acidophilus 
и B. lactis соответственно) демонстрирует их адек-
ватную кислотоустойчивость. Полученные дан-
ные согласуются с результатами исследований 
Дармова И.В. с соавт. (2011), показавших сходную 
выживаемость штамма L. acidophilus в кислой среде 
[25]. Капсульная форма препарата обеспечивает 
дополнительную защиту пробиотических микро-
организмов от желудочного сока [26].

Восстановление популяций лактобактерий в мо-
дели толстой кишки от субнормальных значений 
5,2 lg КОЕ/мл до оптимальных 9,0 lg КОЕ/мл к 14-м 
суткам демонстрирует высокую колонизационную 
активность штамма LA-5. Стабилизация концен-
трации лактобактерий на уровне 7,5 lg КОЕ/мл 
после прекращения введения препарата свидетель-
ствует о формировании устойчивого микробиоло-
гического баланса.

Динамика популяции бифидобактерий харак-
теризовалась прогрессивным ростом до концен-
трации, соответствующей физиологической норме 
для детского возраста. Волнообразная динамика 
роста бифидобактерий в модели ДПК может отра-
жать адаптационные процессы к изменяющимся 
условиям микросреды. Мета-анализ клинических 
исследований пробиотика B. lactis Вb-12 под-
тверждает его эффективность для профилактики 
инфекций дыхательных путей, кишечных колик 

у детей раннего возраста, профилактики и лечения 
атопической экземы, что обусловлено выраженной 
способностью к адгезии и пролиферации в услови-
ях толстого кишечника [27].

Элиминация условно- патогенных микроорга-
низмов (Citrobacter spp. к 7-м суткам, C. perfringens 
к 9-м суткам) демонстрирует выраженную антаго-
нистическую активность исследуемых штаммов. 
Механизмы антагонизма включают конкуренцию 
за питательные субстраты, продукцию бактери-
оцинов и органических кислот [28]. Супрессия 
популяции Streptococcus spp. может быть связана 
с прямым антимикробным действием метаболитов 
пробиотических штаммов.

Особого внимания заслуживает нормализация 
соотношения Bacteroides spp. / F. prausnitzii с пато-
логических значений 74,1 до оптимального диапа-
зона 16,9–38,8. Faecalibacterium prausnitzii является 
ключевым продуцентом бутирата и обладает про-
тивовоспалительными свой ствами, а его дефицит 
ассоциирован с развитием воспалительных забо-
леваний кишечника [29]. Восстановление данного 
соотношения указывает на системное улучшение 
функционального статуса микробиоценоза под 
влиянием вводимых пробиотиков.

Хроматографический анализ выявил специ-
фические паттерны метаболической активности 
исследуемых штаммов. Максимальное накопле-
ние молочной кислоты на 7-е сутки в условиях 
ДПК отражает пиковую активность L. acidophilus. 
Обнаружение янтарной кислоты исключительно 
в группе с пробиотиками подтверждает специфи-
ческую метаболическую активность штамма BB-12, 
поскольку янтарная кислота является характерным 
продуктом метаболизма бифидобактерий [30].

Преобладание короткоцепочечных жирных кис-
лот в условиях толстого кишечника соответствует 
физиологическим процессам микробной фермен-
тации. Бутановая и пентановая кислоты играют 
ключевую роль в поддержании барьерной функции 
кишечника и обладают противовоспалительны-
ми свой ствами [31]. Нормализация качественного 
состава органических кислот под влиянием про-
биотиков указывает на восстановление метаболи-
ческого гомеостаза микробиоценоза.

Полученные результаты демонстрируют ком-
плексное положительное воздействие комбинации 
штаммов LA-5 и BB-12 на основные показатели 
кишечного микробиома при дисбиотических нару-
шениях. Выявлен выраженный пролонгированный 
эффект пробиотической коррекции, проявляю-
щийся в сохранении достигнутых результатов 
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в течение периода наблюдения после завершения 
введения препарата в модельную систему ИЖКТ, 
что свидетельствует о формировании стабильной 
популяции пробиотических микроорганизмов, 
способной к самоподдержанию в восстановленном 

микробиоценозе. Данное наблюдение имеет прин-
ципиальное клиническое значение, поскольку ука-
зывает на возможность достижения долгосрочного 
терапевтического эффекта при курсовом примене-
нии препарата.
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