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Резюме

Лекарственные препараты, особенно принимаемые перорально, неизбежно контактируют с микроорганизмами, 
населяющими желудочно- кишечный тракт (ЖКТ). Кишечная микробиота может производить ферменты с различной 
каталитической активностью и, таким образом, влиять на биологическую активность, биодоступность и токсичность 
нескольких природных или синтетических веществ, в том числе лекарственных средств, а также биотрансформировать 
препараты в другие химические формы или метаболиты, которые могут изменять эффективность или токсичность 
исходного действующего вещества. Также кишечная микробиота может косвенно влиять на эффективность и ток-
сичность лекарств, изменяя способность организма к метаболизму или процессы, происходящие в организме (влияя 
на функцию печени, изменяя экспрессию печеночных ферментов или метаболических генов, вмешиваясь в процессы 
детоксикации). С другой стороны, лекарственные препараты как ксенобиотики могут оказывать негативное влияние 
на микроорганизмы ЖКТ, что может способствовать развитию побочных эффектов со стороны пищеварительной 
системы. В статье рассматриваются возможные варианты взаимодействия кишечной микробиоты и нестероидных 
противововоспалительных препаратов.
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Summary

Medications, especially those taken orally, inevitably come into contact with microorganisms inhabiting the gastrointestinal 
tract (GIT). The intestinal microbiota can produce enzymes with various catalytic activities and, thus, aff ect the biological 
activity, bioavailability and toxicity of several natural or synthetic substances, including medicines, as well as biotransform 
drugs into other chemical forms or metabolites that can alter the eff ectiveness or toxicity of the initial active substance. The 
intestinal microbiota can also indirectly infl uence the eff ectiveness and toxicity of drugs by altering the body’s ability to me-
tabolize or the processes occurring in the body (aff ecting liver function, altering the expression of liver enzymes or metabolic 
genes, interfering with detoxifi cation processes). On the other hand, drugs like xenobiotics can have a negative eff ect on the 
microorganisms of the gastrointestinal tract, which can contribute to the development of side eff ects from the digestive sys-
tem. The article discusses possible interactions between the intestinal microbiota and nonsteroidal anti-infl ammatory drugs.
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Лекарства, принимаемые перорально, не-
избежно взаимодействуют с микробны-
ми сообществами желудочно- кишечного 

тракта (ЖКТ), самым разнообразным из которых 
является микробиота толстой кишки. Кишечная 
микробиота может непосредственно биотрансфор-
мировать лекарственные препараты, принимае-
мые перорально и системно, в другие химические 
формы или метаболиты, которые могут изменять 
эффективность или токсичность исходного лекар-
ственного средства. Известно, что микробиота ки-
шечника человека к настоящему времени биотранс-
формирует более 50 фармацевтических препаратов, 
производя ферменты с различной каталитической 
активностью и, таким образом, определяя биоло-
гическую активность, биодоступность и токсич-
ность нескольких природных или синтетических 
веществ [1, 2, 3].

Реакции, катализируемые бактериальными 
ферментами, включают: восстановление, гидро-
лиз, гидроксилирование, дигидроксилирование, 

деалкилирование, дезаминирование, декарбокси-
лирование, ацетилирование, деацетилирование 
и редко окисление [4]. Основными семействами 
бактериальных ферментов, участвующих в мета-
болизме лекарственных средств, являются: β-глю-
куронидазы, азоредуктазы, деметилазы, десуль-
фатазы, сульфоксидредуктаза [5]. Микробный 
метаболизм лекарств в кишечнике приводит к об-
разованию метаболитов с активными, неактивны-
ми или токсичными свой ствами [6]. Образование 
этих микробных метаболитов происходит одно-
временно и часто конкурирует с метаболически-
ми процессами хозяина. Таким образом, химия 
микробных превращений отличается от химии 
ферментов хозяина, и она может противодейство-
вать метаболизму хозяина или обращать его вспять, 
в конечном счете изменяя фармакокинетику и фар-
макодинамику ксенобиотиков и их метаболитов. 
Кроме того, в то время как метаболизм хозяина 
происходит для детоксикации организма от ксе-
нобиотиков, микробные модификации обычно 
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происходят для обеспечения микробов питатель-
ными веществами и энергией.

Кишечная микробиота может косвенно влиять 
на эффективность и токсичность лекарств, изме-
няя способность организма к метаболизму или 
процессы, происходящие в организме (влияя на 
функцию печени, изменяя экспрессию печеночных 
ферментов или метаболических генов, вмешиваясь 
в процессы детоксикации) [7].

Нестероидные противовоспалительные препа-
раты (НПВП) – одна их наиболее широко назнача-
емых групп лекарственных средств в различных 

направлениях медицины, например, в кардиоло-
гии, ревматологии, неврологии. Негативное влия-
ние этих препаратов на пищеварительную систе-
му известно. Механизмы этого влияния связаны 
с ингибированием циокооксигеназы-1. Однако, 
развитие НПВП-эзофагопатии, -гастропатии, -эн-
теропатии может быть ассоциировано также с фор-
мированием изменений микробиоты ЖКТ, что 
изучено недостаточно. Также интересно рассмо-
треть возможные механизмы влиятия кишечной 
микробиоты на метаболизм НПВП.

Влияние микробиоты ЖКТ на эффективность НПВП

Микробиоту кишечника можно рассматривать как 
важный метаболический «орган» для лекарствен-
ных препаратов, обладающий метаболической спо-
собностью, по меньшей мере, равной метаболиче-
ской способности печени [7]. Кишечная микробиота 
может ограничивать всасывание лекарств в тон-
ком кишечнике, увеличивая экспрессию белков 
межклеточной адгезии, утолщая защитный слой 
слизистой оболочки и / или непосредственно изо-
лируя химические вещества, чтобы предотвратить 
их всасывание [3]. Эти процессы могут влиять на 
биодоступность лекарств с последствиями для ток-
сичности лекарств (на участке тела, где происходит 
биоаккумуляция лекарств) и/или эффективности 
лекарств (поскольку циркулируют более низкие 
концентрации лекарств). Кроме того, микробиота 
кишечника может регулировать экспрессию генов 
хозяина, участвующих в различных метаболиче-
ских путях, включая регуляцию ядерных рецепто-
ров, ферменты I и II фазы и транспортеры [3]. Более 
того, микробиота кишечника может вырабатывать 
микробные метаболиты, которые могут конкури-
ровать с метаболизмом лекарств [8]. По оценкам 
ученых, микробиом желудочно- кишечного тракта 
включает ~3,3 миллиона микробных генов (в 150 
раз больше, чем геном человека- хозяина), включая 
гены, участвующие в биодеградации ксенобиоти-
ков и метаболических путях [9, 10].

Микробиота может влиять на распределе-
ние НПВП, их терапевтическую эффективность 
и токсичность. Микробиота кишечника может 
непосредственно вызывать химические модифи-
кации НПВП или может косвенно влиять на его 

всасывание или метаболизм путем регулирования 
метаболических ферментов или процессов хозяина, 
что может иметь последствия для фармакокинети-
ческих и фармакодинамических свой ств препарата 
[7]. Кроме того, бактериальные метаболиты могут 
конкурировать с лекарственными средствами за 
метаболические ферменты хозяина. Например, 
выработка п-крезола бактериями конкурирует 
с цитозольной сульфотрансферазой человека, уча-
ствующей в метаболизме ацетаминофена, так что 
увеличение выработки п-крезола вызывает сниже-
ние О-сульфирования ацетаминофена и усиление 
глюкуронизации [11].

Бактериальные ферменты, такие как β-глюкуро-
нидаза, β-глюкозидаза, деметилаза, десульфатазы 
и другие ферменты, могут удалять небольшие мо-
лекулы, присоединенные к лекарственному сред-
ству ферментами хозяина в процессе метаболиз-
ма лекарственного средства. Этот процесс делает 
свободную молекулу исходного лекарственного 
средства доступной для реабсорбции (энтероге-
патической циркуляции) организмом- носителем 
и, таким образом, увеличивает воздействие на 
организм- носитель самого лекарственного сред-
ства или его метаболитов. Такого рода реабсорб-
ция продлевает воздействие лекарств в организ-
ме (более длительный период полувыведения) 
и часто способствует развитию токсичности [12]. 
Следовательно, в условиях изменения кишечной 
микробиоты с повышением уровня вышеуказан-
ных бактериальных ферментов может косвенно 
приводить к повышению риска развития НПВП-
осложнений со стороны ЖКТ.

Влияние приема НПВП на состав микробиоты ЖКТ

НПВП сами по себе могут непосредственно влиять 
на состав и функцию кишечной микробиоты или 
косвенно изменять физиологические свой ства или 
функции организма хозяина, что, в свою очередь, 
может привести к дисбактериозу [7].

Применение НПВП может повлиять на состав 
микробиоты кишечника и метаболическую актив-
ность путем прямого воздействия на микробио-
ту (например, путем ингибирования /облегчения 
роста микроорганизмов, индуцирования гибе-
ли микробных клеток и/или влияния на метабо-
лизм микроорганизмов) или путем косвенного 

воздействия путем взаимодействия с хозяином 
(например, путем изменения метаболизма, сре-
ды кишечника, целостности слизистой оболочки 
и проницаемости). Как селективные, так и неселек-
тивные НПВП могут влиять на состав кишечной 
микробиоты у животных и человека (табл. 1) [7].

Хотя чрезмерный рост специфических бакте-
рий после приема НПВП был признан в течение 
нескольких десятилетий, причины дисбактери-
оза, вызванного НПВП, неизвестны. Одна из ги-
потез заключается в том, что некоторые НПВП 
могут обладать антибактериальной активностью 
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Наименование НПВП Испытуемые
Влияние на микробиоту 
толстой кишки

Первый автор, год

Индометацин
7.5 mg/kg Крысы (самки)

Enterococcus faecalis
  Segmented fi lamentous 

bacteria
Dalby A.B., 2006 [13]

Индометацин
7.5 mg/kg Крысы (самки)

  Bacteroides 
and Enterobacteriaceae

 Clostridium
Terán- Ventura E., 2014 [14]

Индометацин
10 mg/kg Мыши (самцы)

 Firmicutes
Ruminococcus, 
Lachnospiraceae,
Anaeroplasma
rc4–4
 Bacteroides
S24–7

Liang X., 2015 [15]

Индометацин
10 mg/kg Мыши Firmicutes

 Bacteroides Xiao X., 2017 [16]

Напроксен 10 мг/кг 2 раза 
в день Крысы Lachnospiraceae

Bacteroides Syer S. D., 2015 [17]

Диклофенак 4 мг/кг 2 раза 
в день Крысы

 Proteobacteria
Bacteroidetes
 Firmicute

Colucci R., 2018 [18]

Целекоксиб Мыши
Coriobacteriaceae
Lactobacillaceae and
Bifi dobacteriaceae

Montrose D. C., 2016 [19]

Целекоксиб 200 мг 2 раза 
в день

Люди (женщины с ожи-
рением) Нет изменений Bokulich N. A., 2016 [20]

Индометацин 75 мг 2 раза 
в день Люди обоих полов

Bacteroidetes (новое 
название филумов 
в скобках ( )

Prevotellaceae ( )
Bacteroidetes ( )
Firmicutes ( )
Firmicutes ( )
 Proteobacteria ( )
 Alphaproteobacteria ( )
 Proteobacteria ( )
 Rhizobiales ( )
 Proteobacteria ( )
Pseudomonadaceae ( )

Edogawa S., 2018 [21]

Таблица 1
Влияние нестеро-
идных противо-
воспалительных 
препаратов на 
содержание неко-
торых микроорга-
низмов в толстой 
кишке

и непосредственно влиять на состав кишечной 
микробиоты (на метаболизм/рост бактерий и/или 
вызывая гибель микробных клеток). Об антибак-
териальном эффекте НПВП сообщалось in vitro 
для индометацина, диклофенака, ибупрофена, 
аспирина и целекоксиба [22, 23, 24]. На моделях 
мышиной инфекции диклофенак показал свою эф-
фективность против Salmonella Typhimurium [25], 
и целекоксиб показал свою эффективность при 
кожной инфекции S. aureus, устойчивой к метицил-
лину [26]. Однако до сих пор остается неизвестным, 
проявляется ли антибактериальная активность 
НПВП при терапевтических концентрациях препа-
ратов in vivo; это может быть причиной дисбактери-
оза, наблюдаемого при приеме НПВП, и это может 
быть связано с энтеропатией, вызванной НПВП.

Есть данные, что НПВП могут изменять фи-
зиологические свой ства или функции органов 
хозяина (например, изменяя среду в кишечнике, 
целостность и проницаемость слизистой оболочки, 
а также нарушая метаболизм хозяина и микроор-
ганизмов), что, в свою очередь, может привести 
к дисбиозу ЖКТ [7].

Пациенты, принимающие НПВП, имеют про-
филь микробиоты кишечника, отличный от про-
филей тех, кто их не использует [27]. Например, 

лечение аспирином вызывает изменение состава 
кишечной микробиоты в отношении Prevotella, 
Bacteroides, Ruminococcaceae и Barnesiella, тогда 
как целекоксиб и ибупрофен увеличивают количе-
ство ацидаминококковых и энтеробактериальных 
бактерий. Ибупрофен вызывает увеличение чис-
ла видов Propionibacteriaceae, Pseudomonadaceae, 
Puniceicoccaceae и Rikenellaceae по сравнению 
с теми, кто его не употребляет, или с теми, кто при-
нимает напроксен [28].

Индометацин- индуцированное повреждение 
тонкой кишки у мышей может усугубиться за счет 
увеличения общего количества бактерий и доли 
грамотрицательных бактерий, а также за счет 
увеличения проницаемости слизистой оболочки 
кишечника посредством передачи сигналов глю-
кокортикоидными рецепторами, например, при 
хроническом стрессе у пациентов, испытывающих 
хроническую боль [29]. Это исследование пока-
зывает, что ось микробиота–кишечник–мозг мо-
жет играть важную роль в развитии энтеропатии, 
вызванной НПВП, о чем сообщалось также при 
других патологических состояниях [30]. В условиях 
нарушенного баланса кишечной микробиоты по-
вышается риск развития НПВП-индуцированной 
энтеропатии [7, 31, 32] (схема 1).
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Влияние приема аспирина на состав микробиоты ЖКТ

Аспирин, или ацетилсалицилловая кислота, заслу-
живает отдельного внимания в связи с высокой 
частотой его назначения пожилым пациентам кар-
диологического профиля, которые зачастую уже 
имеют другие факторы риска развития дисбиоза 
ЖКТ. Полногеномное секвенирование образцов 
кала показало, что после приёма аспирина в тече-
ние 30 дней в дозе 100 мг в день, индекс Шеннона 
существенно не изменился, а индекс Симпсона 
снизился, а также состав кишечной микробиоты 
существенно изменился после лечения аспирином: 
было отмечено снижение численности P. goldsteinii, 
Parabacteroides merdae (P. merdae) и Parabacteroides 
distasonis (P. distasonis) [33].

Прием аспирина модулирует микрофлору ки-
шечника и связанные с ней метаболиты, такие 
как желчные кислоты, но как это влияет на гоме-
остаз кишечника, остается неясным. В исследо-
вании Li T. и соавт. (2024) у мышей, получавших 
аспирин, идентифицировали кишечный микроб 
Parabacteroides goldsteinii, рост которого подавляет-
ся аспирином [33]. У мышей, которым добавляли P. 
goldsteinii или его метаболит – 7-кето-литохолевую 
кислоту, наблюдалось снижение опосредованного 
аспирином повреждения слизистой оболочки киш-
ки и кишечного барьера [33].

Есть исследования, в которых показано положи-
тельное влияние аспирина на кишечную микробио-
ту. Особого внимания заслуживает исследование, 
в котором показано, что аспирин уменьшает разви-
тие колоректальных опухолей у мышей ApcMin/+ 

и мышей, получавших азоксиметан и декстран-
сульфат натрия, в зависимости от присутствия 
кишечных микробов. L. sphaericus в кишечнике 
разлагает аспирин, что показано в исследованиях 
у мышей. Образцы фекалий мышей, получавших 
аспирин, были обогащены полезными бактериями 
при снижении количества патогенных бактерий 
[34]. В другом исследовании показано, что аспирин 
и его основной метаболит салициловая кислота 
изменяют рост штамма Fusobacterium nucleatum 
Fn7–1. На уровнях, которые не ингибируют рост 
микроорганиизма, аспирин влияет на экспрес-
сию гена Fn7–1. Оценка модуляции F. nucleatum 
аспирином in vivo на модели опухоли кишечника 
мыши ApcMin / +, в которой ежедневно перорально 
вводят Fn7–1, установила, что добавки аспири-
на достаточно для ингибирования F. nucleatum- 
потенцируемого опухолеобразования толстой 
кишки. При обследовании пациентов выявлено, 
что у лиц, ежедневно принимающих аспирин, ко-
личество фузобактерий в тканях аденомы толстой 
кишки ниже, что определяется количественной 
ПЦР, выполненной на ДНК аденомы. Эти данные 
подтверждают, что аспирин обладает прямой ан-
тибиотической активностью в отношении F. nu-
cleatum и предполагают, что рассмотрение потен-
циального воздействия аспирина на микробиом 
является перспективным для оптимизации оценки 
соотношения риска и пользы при использовании 
аспирина в профилактике и лечении колоректаль-
ного рака [35].

Схема 1.
Механизмы 
взаимодействий 
НПВП-микробиота 
кишечника

Прием НПВП

Соединение LPS
грамотрицательных бактерий

и HMGB1 из поврежденных
эпителиальных клеток

с TLR-4

Бактериальная
транслокация

и эндотокснемия

Воспаление
слизистой оболочки

кишки

Усугубление
дисбиоза кишечника
и НПВП-энтеропатии

Активация NF-кВ
по MyD88-зависимому

пути, увеличение
выработки цитокинов

(TNF-α, IL-1β, IL-6

Ингибирование
циклооксигеназ

и изменение
выработки

простагландинов
Антибактериальные свойства

Нарушение кишечного
барьера с повышением

эпителиальной
проницаемости

Нарушение микробиоты ЖКТ 

Энтеропатия
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Особенности микробиоты кишечника 
на фоне приема НПВП у пожилых людей

Общее количество микробов снижается у пожи-
лых людей (от 70 до 85 лет) по сравнению с более 
молодыми субъектами (средний возраст 28 лет), но 
оно выше у лиц старшего возраста, принимающих 
НПВП, по сравнению с лицами старшего возраста, 
не употребляющими их. Однако окончательный со-
став микробиоты пожилых людей, принимающих 
НПВП, свидетельствует о снижении содержания 
Collinsella, Actinobacteria и Lactobacillus по срав-
нению с пожилыми людьми, не употребляющими 
НПВП, и молодыми взрослыми, а относительно вы-
сокое количество лактобацилл наблюдалось только 
у пожилых пациентов, не принимавших НПВП [28]. 
На уровне рода была выявлена интересная связь 
между сокращением доли известных продуцентов 

бутирата, принадлежащих к Clostridium cluster 
XIVa, таких как Roseburia и Ruminococcus, у по-
жилых людей [28].

При исследовании особенностей микробиоты 
у пятидесяти пяти пожилых людей (в возрасте 
68–88 лет), принимавших НПВП, группу сравнения 
составили четырнадцать молодых людей (в возрас-
те 21–39 лет). Концентрации изобутирата, изова-
лерианата и лактата были статистически значимо 
ниже у пожилых людей, принимавших НПВП, чем 
у пожилых людей, не принимавших НПВП. Уровни 
короткоцепочечных жирных кислот и соотноше-
ние Clostridium coccoides- Eubacterium rectale были 
снижены у пожилых людей, принимающих НПВП, 
по сравнению с молодыми взрослыми [36].

Коррекция нарушений кишечной микробиоты у пациентов, 
принимающих НПВП

Микробиота кишечника представляет собой ми-
шень для терапевтического вмешательства, по-
скольку изменение ее функциональности и ме-
таболических возможностей может повысить 
эффективность НПВП и/или уменьшить побочные 
эффекты НПВП. В частности, в нескольких иссле-
дованиях сообщалось о положительном влиянии 
коррекции изменений кишечной микробиоты 
при повреждении тонкого кишечника, вызванном 
НПВП [37, 38].

Некоторые плохо всасывающиеся антибиотики, 
которые воздействуют на грамотрицательные бак-
терии, предотвращают энтеропатию, вызванную 
НПВП, у мышей [18, 39] и у людей [40, 41]. Однако, 
применение антибиотиков в течение длительного 
периода времени может быть вредным, посколь-
ку это может увеличить риск развития бактерий 
с множественной лекарственной устойчивостью 
и/или энтерита, ассоциированного с приемом ан-
тибиотиков [17]. Следовательно, альтернативные 
препараты или способы изменения кишечной 
микробиоты могут стать лучшими кандидатами 
для профилактики или лечения энтеропатии, вы-
званной НПВП [42, 43].

Прием специфических штаммов пробиоти-
ков у пациентов, длительно получающих НПВП, 
может помочь восстановить измененную микро-
биоту кишечника [42]. Предварительное лечение 
штаммом Lactobacillus casei Shirota (LcS) улучша-
ет индометацин- индуцированную энтеропатию 
за счет подавления инфильтрации нейтрофилов 
и экспрессии воспалительных цитокинов [44]. 
Аналогичным образом, L-молочная кислота, вы-
рабатываемая LcS, подавляет индуцированное 
индометацином повреждение тонкого кишечника 
у крыс [44]. Супернатанты культур Lactobacillus 
acidophilus или Bifi dobacterium adolescentis умень-
шают вызванное НПВП повреждение подвздош-
ной кишки, подавляя несбалансированный рост 
аэробных бактерий и  перекисное окисление 
липидов у крыс [45]. Введение Bifidobacterium 

adolescentis или Faecalibacterium prausnitzii пе-
ред применением напроксена приводит к значи-
тельному уменьшению повреждения кишечника 
у крыс, вероятно, за счет влияния на биосинтез 
цитопротекторных короткоцепочечных жирных 
кислот [17]. Сообщалось, что комбинация лакто-
феррина с Bifi dobacterium longum защищает от 
энтеропатии, вызванной диклофенаком, у крыс 
частично за счет модуляции путей TLR-2/-4/ NF-
κB [46]. Lacticaseibacillus casei значительно умень-
шает количество поражений слизистой оболочки 
кишечника у пациентов, получавших низкие дозы 
аспирина, по сравнению с пациентами контроль-
ной группы [47]. В двой ном слепом исследовании 
употребление йогурта, содержащего Lactobacillus 
gasseri, уменьшает повреждения тонкого кишеч-
ника, вызванные приемом аспирина, и умень-
шает жалобы со стороны желудочно- кишечного 
тракта [48]. Пробиотическая смесь, состоящая 
из восьми различных живых бактерий (VSL#3), 
значительно снижает концентрацию кальпро-
тектина в кале, маркера воспаления кишечника 
и энтеропатии, у здоровых добровольцев, полу-
чавших индометацин, по сравнению с теми, кто 
получал плацебо, в рандомизированном двой ном 
слепом плацебо- контролируемом перекрестном 
исследовании [49]. В рандомизированном двой-
ном слепом исследовании на здоровых доброволь-
цах [50] было показано, что Bifi dobacterium breve 
защищает от вызванного аспирином повреждения 
тонкого кишечника. Прием живых лактобактерий 
GG уменьшает нарушение целостности слизистой 
оболочки желудка, но не кишечника, вызванное 
индометацином, у здоровых людей [51]. С другой 
стороны, штаммы Lactobacillus plantarum не улуч-
шали проницаемость кишечника, измененную 
индометацином, в ходе небольшого рандомизи-
рованного плацебо- контролируемого перекрест-
ного исследования на здоровых добровольцах [52]. 
Сводные результаты исследований представлены 
в табл. 2.
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Штамм пробиотика/тип 
пребиотика

Испытуемые, вид НПВП Влияние НПВП-поражение ЖКТ
Первый 
автор, год

Lactobacillus casei Shirota 
(LcS), 107–109 КОЭ/г, в те-
чение недели

Крысы Wistar (самцы), 
индометацин

Подавление индуцированного индомета-
цином повреждения тонкой кишки
Ингибирование активности миелопе-
роксидазы и экспрессии мРНК фактора 
некроза опухоли альфа

Watanabe T, 
2009 [44]

Супернатанты 
Lactobacillus acidophilus 
ATCC4356 2* 108 
или Bifi dobacterium 
adolescentis ATCC15703 
4,5*109

Крысы Wistar (самцы), 
5-бром-2-(4-фторфе-
нил)-3-(4-метилсуль-
фонилфенил) тиофен 
(BFMeT)

Уменьшение НПВП-повреждения под-
вздошной кишки
Подавление несбалансированного роста 
аэробных бактерий
Подавление перекисного окисления 
липидов

Kinouchi T, 
1998 [45]

Bifi dobacterium 
adolescentis или 
Faecalibacterium 
prausnitzii в течение 
5 дней

Крысы, напроксен Значительное уменьшение повреждения 
кишечника
Позитивное влияние на биосинтез 
цитопротекторных короткоцепочечных 
жирных кислот

Syer SD, 
2015 [17]

Bifi dobacterium longum 
subsp. longum JCM 1217 
в течение 5 дней

Крысы, напроксен Отсутствие значимого эффекта Syer SD, 
2015 [17]

B. longum subsp. longum 
NCC 1205

Крысы, напроксен Значительное уменьшение повреждения 
кишечника

Syer SD, 
2015 [17]

Комбинация лактофер-
рина с Bifi dobacterium 
longum

Крысы, диклофенак Протекция от НПВП- энтеропатии за счет 
модуляции путей TLR-2/-4/ NF-κB

Fornai M., 
2020 [46]

Пробиотическая смесь, 
состоящая из восьми 
различных живых бак-
терий (VSL#3)*/ плацебо

Здоровые добровольцы, 
индометацин

Значительное снижение фекального 
кальпротектина по сравнению с теми, кто 
получал плацебо

Montalto 
M., 2010 
[49]

Bifi dobacterium breve 
Bif195 5*1010 КОЕ/г или 
плацебо ежедневно в те-
чение 8 недель

35 (пробиотик) /31 (пла-
цебо) здоровых добро-
вольцев, аспирин 300 мг 
в день 6 недель

Уменьшение повреждения тонкой кишки Mortensen 
B, 2019 [50]

Lactobacillus GG (LGG) Здоровые добровольцы, 
индометацин

Уменьшает нарушение целостности слизи-
стой оболочки желудка, но не кишечника

Gotteland 
M, 2001 [51]

L. plantarum WCFS1, 
CIP104448, TIFN101 или 
плацебо, 7-дневный 
пероральный прием 
с последующим 4-не-
дельным перерывом

10 здоровых доброволь-
цев, индометацин

Отсутствие влияния пробиотиков на соот-
ношение лактулозы и рамнозы (показатель 
проницаемости тонкой кишки)
L. plantarum TIFN101 оказал специфи-
ческое влияние на транскрипцию генов 
в процессе репарации в поврежденном 
кишечнике по данным анализа биоптатов 
тонкой кишки

Mujagic Z, 
2017 [52]

Lacticaseibacillus casei 
3 месяца / плацебо

13 (пробиотик) /12 
(плацебо) пациентов, 
аспирин 100 мг в день 
в течение более 3 месяцев 
плюс омепразол по 20 мг

В группе L. casei наблюдалось значитель-
ное снижение количества разрывов сли-
зистой оболочки по данным капсульной 
эндоскопии по сравнению с результатами 
в контрольной группе (Р = 0,039).

Endo H, 
2011 [47]

112 мл йогурта, содержа-
щего Lactobacillus gasseri 
или плацебо два раза 
в день в течение 6 недель

64 пациента, аспирин Уменьшение повреждения тонкой кишки 
по данным капсульной эндоскопии: мень-
ше разрывов слизистой оболочки тонкой 
кишки и гиперемии, чем в группе плацебо 
(р < 0,01)
Уменьшение жалоб со стороны ЖКТ

Suzuki T, 
2017 [48]

Таблица 2
Влияние пробиоти-
ков и синбиотиков 
на течение НП-
ВП-гастропатии/
энтеропатии

Примечание:
* VSL#3 состав: Streptococcus thermophilus, Bifi dobacterium breve, Bifi dobacterium lactis (previously classifi ed as B. longum), 
Bifi dobacterium lactis (previously classifi ed as B. infantis), Lactobacillus acidophilus, actobacillus plantarum, Lactobacillus 
paracasei, Lactobacillus helveticus (previously classifi ed as L. delbrueckii subsp. bulgaricus)

Следует отметить, что, ребамипид, средство для 
системной цитопротекции, может предотвращать 
вызванное НПВП повреждение и улучшать за-
живление кишечника, в том числе, за счет регу-
лирования кишечной микробиоты у животных 
[53–56] и у людей [57–62]. Защитный эффект реба-
мипида от повреждений тонкого кишечника при 

приеме НПВП обусловлен несколькими механиз-
мами, включая его способность активизировать 
экспрессию гена альфа- дефензина 5 и белков в тка-
нях подвздошной кишки, что увеличивает числен-
ность грамположительных бактерий и уменьшает 
количество грамотрицательных микробов, как 
сообщалось, у мышей [55].
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Заключение

Сложная взаимосвязь между микробиотой ки-
шечника хозяина и НПВП может способствовать 
вариабельности ответа на препараты данной 
группы и, в конечном итоге, влиять на исход те-
рапии НПВП. Коррекция нарушений кишечной 

микробиоты, в частности, с помощью пробиоти-

ческих препаратов, может использоваться для 

профилактики или уменьшения патологии ЖКТ, 

ассоциированной с приемом НПВП [7].
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