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Резюме

Печень является важным органом обмена веществ и детоксикации и, следовательно, требует большого количества 
энергии, которая в основном вырабатывается митохондриями. Митохондриальный оксидативный стресс, который 
возникает, когда ферментативные и неферментативные антиоксиданты перегружаются активными формами кислорода 
(АФК), образующимися при различных патологических процессах. Это приводит к гепатоцеллюлярной дисфункции 
и, в конечном итоге, к фиброзу печени.

Данный обзор посвящен современным представлениям патофизиологических основ митохондриального оксида-
тивного стресса и его влиянию на развитие хронических заболеваний печени различной этиологии.
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Summary

The liver is an important organ of metabolism and detoxifi cation and, therefore, requires a large amount of energy, which 
is mainly produced by mitochondria. Mitochondrial oxidative stress, which occurs when enzymatic and non-enzymatic 
antioxidants are overloaded with reactive oxygen species (ROS) formed during various pathological processes. This leads to 
hepatocellular dysfunction and, eventually, liver fi brosis.

This review is devoted to modern concepts of the pathophysiological foundations of mitochondrial oxidative stress and its 
eff ect on the development of chronic liver diseases of various etiologies.

Keywords: oxidative stress, mitochondria, mitochondrial dynamics, mitophagy
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Введение

Одной из основных причин заболеваемости 
и смертности во всем мире являются хрониче-
ские заболевания печени [1, 2]. Прогрессирующее 
ухудшение функций печени в результате таких 
заболеваний, как вирусный гепатит, лекарственно- 
индуцированное поражение печени, аутоиммун-
ный гепатит, алкогольная и неалкогольная жировая 
болезнь печени (НАЖБП), – сопровождаются об-
разованием гепатотоксинов [3]. Распространенным 
осложнением почти всех типов гепатопатий яв-
ляется фиброз печени, который при отсутствии 
лечения в конечном итоге может прогрессировать 
в цирроз, для которого характерно нарушение ар-
хитектуры ткани печени, дегенерация и некроз 
гепатоцитов, а также замещение паренхимы пе-
чени фиброзными тканями и регенеративными 
узелками с последующим развитием печёночной 
недостаточности и гепатоцеллюлярной карциномы 
(ГЦК) [1, 4–7].

Фиброз – это динамичный процесс, который 
можно предотвратить или нивелировать путем 
устранения вызывающих его патогенных факторов 
или проведения соответствующих терапевтических 

вмешательств, таких как применение противо-
вирусных препаратов, которые замедляют про-
грессирование вирус- ассоциированного фиброза 
печени [8–11]. Однако, несмотря на это уровень 
смертности, связанный с заболеваниями печени, 
увеличился с 3% в 2010 году до 3,5% в 2019 году, что 
является огромным экономическим бременем во 
всем мире [12]. Поэтому выяснение молекулярных 
механизмов повреждения печени и разработка 
новых потенциальных терапевтических мишеней 
имеет огромное значение.

Одной из основных причин нарушения струк-
туры и функции печени является оксидативный 
стресс, который возникает, когда ферментатив-
ные и неферментативные антиоксиданты в печени 
перегружаются активными формами кислорода 
(АФК), образующимися при различных патоло-
гических процессах. Это приводит к гепатоцел-
люлярной дисфункции и, в конечном итоге, к фи-
брозу печени. Оксидативный стресс лежит в основе 
патофизиологии хронических болезней печени 
различной этиологии, а также участвует в развитии 
гепатоканцерогенеза.

Митохондрии

Печень является важным органом обмена веществ 
и детоксикации и, следовательно, требует большого 
количества энергии, вырабатывающейся в основ-
ном митохондриями, которые служат «энерге-
тической фабрикой» в эукариотических клетках 
и играют важную роль в метаболизме липидов 
и углеводов для получения энергии в виде адено-
зинтрифосфатазы (АТФ).

Митохондрии – это высокодинамичные двух-
мембранные цитоплазматические органеллы 
(рис. 1), ответственные за энергоснабжение клеток 
с помощью системы окислительного фосфорилиро-
вания, которые обладают собственным геномом – 
митохондриальной ДНК (mtDNA), кодирующим 
основные белковые субъединицы комплекса ци-
тохром С оксидаз (Cytochrome С oxidase – COX) I–V 
цепи переноса электронов (COX I–V) для синтеза 
АТФ (рис. 2) [13, 14].

Примерно 90% вырабатываемого АТФ продуци-
руется с помощью окислительного фосфорилирова-

ния (oxidative phosphorylation – OXPHOS). В мито-
хондриальном матриксе энергетические субстраты 
вступают в цикл трикарбоновых кислот и генериру-
ют переносчики электронов (никотинамидаденин-
динуклеотид – NAD и флавиноадениндинуклеотид – 
FAD), которые перемещаются по цепи переноса 
электронов и стимулируют выброс протонов из 
матрикса в межмембранное пространство, обра-
зуя, таким образом, электрохимический градиент, 
называемый «трансмембранный потенциал ми-
тохондрий» (ТМПМ) [15, 16]. COX IV достигает 
последнего этапа дыхательной цепи митохондрий, 
на котором он принимает электроны от восстанов-
ленных молекул связанного с внутренней мембра-
ной митохондрий цитохрома С (Cyt C) и переносит 
их на кислород и протоны, образуя молекулы воды. 
COX V преобразует энергию движения протонов, 
фосфорилируя АДФ в АТФ (рис. 2) [13, 17].

Кроме продукции энергии, митохондрии уча-
ствуют во многих жизненно важных клеточных 



145

обзор | review

процессах, включая цикл образования мочевины, 
метаболизм железа, гомеостаз кальция, пролифе-
рацию клеток и передачу сигналов, связанных с по-
вреждениями молекулярных структур, метаболизме 
аминокислот и липидов, а также в апоптозе. [18–22].

Регулируя врожденные иммунные реакции, ми-
тохондрии контролируют воспаление и развитие 
связанных с ним заболеваний [23]. Кроме того, ми-
тохондрии играют важную роль в поддержании 
окислительно- восстановительного состояния кле-
ток, балансируя выработку АФК и их выведение си-
стемой антиоксидантной защиты. Нарушение этих 

процессов в митохондриях может служить причи-
ной возникновения и прогрессирования заболева-
ний печени. Когда ферментативные и нефермента-
тивные антиоксиданты в печени перегружаются 
активными формами кислорода, а поврежденные 
митохондрии не способны поглощать избыточно 
вырабатываемые АФК, возникает оксидативный 
стресс, что приводит к гепатоцеллюлярной дис-
функции и, в конечном итоге, к фиброзу печени 
и считается одной из причин гибели гепатоци-
тов [1]. Снижение оксидативного стресса может 
препятствовать развитию фиброза печени [24].

Митохондрии и активные формы кислорода
АФК являются побочными продуктами OXPHOS 
во время аэробного дыхания, представляют собой 
группу высокоактивных кислородсодержащих 

молекул, которые включают в себя не только су-
пероксидный анион–радикал (O2–), перекись во-
дорода (H2O2) и гидроксильный радикал (HO•), 

Рисунок 1.
Схема структуры митохондрии 
(адаптировано из открытых источников).

Примечание.
Структура митохондрии, включающая внешнюю 
митохондриальную мембрану, внутреннюю митохон-
дриальную мембрану, межмембранное пространство 
и митохондриальный матрикс, в котором энергети-
ческие субстраты вступают в цикл трикарбоновых 
кислот и генерируют переносчики электронов (NAD 
и FAD), которые стимулируют выброс протонов из 
матрикса в межмембранное пространство, образуя 
трансмембранный потенциал митохондрий (ТМПМ). 
Митохондриальный геном (mtDNA), расположенный 
в митохондриальном матриксе, содержит 37 генов, 
кодирующих 13 белков окислительного фосфорили-
рования (OXPHOS), 2 рибосомальные РНК, 22 тРНК 
и регуляторную область D-петли. mtDNA кодирует 
основные белковые субъединицы комплекса 
цитохром С оксидаз (Cytochrome С oxidase – COX) I–V 
цепи переноса электронов (COX I–V) для синтеза АТФ.

Figure 1.
Diagram of the structure of mitochondria (adapted 
from open sources).
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Рисунок 2.
Схема механизмов и путей, которые приводят 
к оксидативному стрессу при хронических заболе-
ваниях печени разной этиологии.

Примечание.
СЖК – свободные жирные кислоты; CYP2F1 – 
Cytochrome P450 2E1 – Член системы оксидазы сме-
шанного действия цитохрома Р450, которая участвует 
в метаболизме ксенобиотиков в организме; SOD – су-
пероксиддисмутаза; SREBP (Sterol regulatory element- 
binding protein) – фактор транскрипции, играет роль 
в синтезе липидов. PPARα (peroxisome proliferator 
activated receptors) – рецептор пероксисом, способен 
регулировать аутофагию. GSH – глютатион; ROO – 
перекисный радикал (активная форма кислорода), 
который может участвовать в повреждении ДНК.

Figure 2.
Scheme of mechanisms and pathways that lead 
to oxidative stress in chronic liver diseases of diff erent 
etiologies.
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но и различные пероксиды, такие как нуклеи-
новые кислоты, липиды и белковые пероксиды 
[25]. Повышенный уровень АФК вызывает откры-
тие переходных пор митохондриальной прони-
цаемости (mitochondrial permeability transition 
pore – mPTP) [26], которые представляют собой 
белок, образующийся во внутренней мембране 
митохондрий, а их открытие увеличивает прони-
цаемость митохондриальных мембран, сопрово-
ждающуюся поступлением большого количества 
воды и ионов в митохондриальный матрикс, что 
приводит к набуханию митохондрий и разрыву 
их внешней мембраны, за которым следует «фаза 
взрыва» продукции АФК, приводящая к окисли-
тельному повреждению mtDNA, белков и липидов 
(рис. 2) [27, 28, 29]. Однако, высвобождение АФК, 
связанное с кратковременным обратимым от-
крытием mPTP, представляет собой адаптивную 
функцию поддержания жизнедеятельности путем 
своевременного высвобождения из митохондрий 
накопленных потенциально токсичных уровней 
АФК [30]. Но чрезмерное количество АФК приво-
дит к более длительному раскрытию mPTP и на-
рушению ТМПМ. Таким образом, митохондрии 
являются и основными продуцентами, и мише-
нями для АФК.

Для защиты от АФК и их устранения клетки вы-
рабатывают вещества для антиоксидантной защи-
ты, которые включают эндогенные и экзогенные, 
а также ферментативные и неферментативные ан-
тиоксиданты (рис. 2). Так, первым охарактеризо-
ванным антиоксидантным ферментом является 
супероксиддисмутаза (SOD), которая вместе с ка-
талазой может расщеплять супероксид (O2–) на 
кислород и перекись водорода. В митохондриях 
дисмутазная активность SOD усиливает превра-
щение супероксид- аниона в H2O2 и кислород, после 
чего H2O2 разлагается на воду – реакция, которая 
катализируется каталазой и глутатионпероксидазой 
(GPx-1), а для ферментативной активности в каче-
стве субстрата используется глутатион (GSH), кото-
рый также служит эндогенным антиоксидантным 
механизмом внутри клеток. GPx представляет собой 
группу ферментов, способных, используя GSH в ка-
честве субстрата, восстанавливать гидропероксиды 
[31]. Что касается неферментативных механизмов 
антиоксидантной защиты, то для селективного уда-
ления дисфункциональных митохондрий и эли-
минации митохондриальных АФК используется 
форма аутофагии – митофагия, которая удаляет 
поврежденные митохондрии, продуцирующие АФК, 
посредством целенаправленной аутофагии [32, 33].

Митохондриальная динамика
Под митохондриальной динамикой подразуме-
вают процесс слияния и деления митохондрий, 
т. е. перестройку митохондриальной сети, которая 
происходит постоянно даже в покоящихся клет-
ках, что поддерживает нормальную морфологию 
и функциональное состояние митохондрий [34].

Слияние – это объединение двух отдельных 
митохондрий в единое целое, гарантирующее, по 
крайней мере, одну копию mtDNA на митохондрию, 
а также эффективный OXPHOS [35]. Слияние про-
исходит либо конец в конец с образованием вытя-
нутых, а иногда и кольцевых митохондрий, либо 
боковым способом, когда появляются Т-образные 
митохондрии (рис. 3) [36].

Слияние – это высококоординированный про-
цесс. Первый этап, когда происходит слияние на-
ружных мембран двух митохондрий, в основном 
контролируется митофузинами 1-го и 2-го типов 
(mitofusins 1 – MFN1; mitofusins 2 – MFN2), закре-
пленными на внешней митохондриальной мембра-
не (outer mitochondrial membrane – OMM), которые, 
образуя гомо- или гетеродимеры, координируют 
слияние двух OMM. При этом MFN1 в основном 
регулирует слияние наружных мембран различ-
ных митохондрий, MFN2 участвует в образова-
нии МАМ-комплексов (mitochondria- associated 
membranes) с эндоплазматическим ретикулумом 
(ЭПР) [37, 38, 39].

На втором этапе, который регулируется лока-
лизованным в цитоплазме белком Opa1 (Optic 
Atrophy-1) и кардиолипином (cardiolipin – CL) 
происходит слияние внутренних мембран мито-
хондрий (inner mitochondrial membranes – IMM) 
[39–42].

Для содействия слиянию мембран присутствие 
MFN1 и MFN2 требуется в обеих OMM в отличие 
от Opa1, присутствие которого для обеспечения 

слияния достаточно в IMM [43]. Opa1 взаимодей-
ствует с MFN1, и нарушение этого взаимодей-
ствия приводит к фрагментации митохондрий 
[39, 44]. Более того, расщепление Opa1 митохон-
дриальными металлопротеазами (OMA1 Zinc 
Metallopeptidase) OMA1 и  YME1L (YME1-Like 
Protein 1) приводит к образованию одной длинной 
изоформы (L-Opa1), которая остается прикреплен-
ной к IMM (Inter-membrane space), и одной корот-
кой изоформы (S-Opa1), которая высвобождается 
в межмембранное пространство (IMS) [39, 45, 46]. 
Хотя повышенное расщепление Opa1 часто связано 
с митохондриальной дисфункцией [47], протеоли-
тическая активация Opa1 необходима для слияния 
митохондрий [48], поскольку L-Opa1 необходим 
для связывания IMM [49], а S-Opa1 усиливает вза-
имодействие L-Opa1 и CL (Cardiolipin) во время 
слияния IMM [39, 41].

Деление относится к удалению/отделению одной 
части митохондрии из основной органеллы. Это 
разделение (фрагментация) может происходить 
либо симметрично, когда две полученные митохон-
дрии имеют схожую дыхательную ёмкость и мем-
бранный потенциал, либо асимметрично, когда 
деление приведет к образованию одной здоровой 
митохондрии и одной поврежденной, причем по-
следняя будет подвергаться деградации с помощью 
митофагии [39, 50–53]. Дугой механизм деления 
митохондрий представляет собой пролиферацию 
этих органелл, когда их разделение проходит по 
центру материнской митохондрии, увеличивая 
их число.

Для начала митохондриального деления необхо-
димо образование контактов этих органелл с ЭПР 
[34, 39, 54]. Инициируются механизмы белком Drp1 
(dynamin- related protein 1). Вероятно, что выбор ме-
ханизма митохондриального деления опосредуют 
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белки наружной мембраны. Так, процесс пролифе-
рации активирует белок Mff (mitochondrial fi ssion 
factor), а для активации механизма фрагмента-
ции важен белок Fis1 (Fission 1) [32, 34, 39, 55–59]. 
Деление координируется цитозольным, связанным 
с динамином белком Drp1, который перемещается 
в наружную мембрану митохондрий (OMM), кон-
тактирует с белками внутренней мембраны (IMM) 
и способствует сжатию органеллы, что приводит 

к ее разрыву. Если показатели ТМПМ соответству-
ют норме, то митохондрии переходят в следующий 
цикл биогенеза. При повышении или снижении 
ТМПМ митохондрия окружается белками PINK1 
(PTEN-induced kinase 1), Parkin и убиквитином, 
которые маркируют органеллу как мишень для 
митофагии [58, 60, 61, 62], что сопровождается уда-
лением митохондрий.

Дисбаланс в митохондриальной динамике
Морфология митохондрий тесно связана с их 
функциями и в основном определяется процессами 
деления и слияния. Оба эти процесса тонко настро-
ены и находятся под влиянием фундаментальных 
клеточных процессов, таких как гомеостаз кальция, 
выработка АТФ и АФК. Слияние митохондрий 
стимулируется стрессом и потребностью в энергии. 
Слияние, вызванное стрессом, позволяет митохон-
дриям обмениваться компонентами, такими как 
комплексы цепей переноса электронов, которые 
необходимы для выработки АТФ. Деление мито-
хондрий обычно происходит, когда генерируются 
новые митохондрии и отделяются неработоспо-
собные органеллы. Кроме того, баланс деления/
слияния защищает клетки, модулируя митофагию 
и биогенез митохондрий [63].

Самосборка различных изоформ Drp1 в кон-
стрикционное кольцо осуществляется при участии 
других элементов деления, таких как Mff  (mitochon-
drial fssion factor) [64] и CL [65]. Роль Fis1 (Fission, 

Mitochondrial 1) в делении митохондрий является 
спорной, поскольку изначально он был описан как 
рецептор, закрепленный на OMM, способствую-
щий митохондриальной локализации Drp1 [66], но 
исследования показали, что Fis1 может вызывать 
фрагментацию митохондрий, ингибируя актив-
ность гуанозинтрифосфат гидролазы (ГТФ-азы) 
в аппарате слияния (MFN1, MFN2 и Opa1) [67]. 
Фосфорилирование различных остатков сери-
на в домене ГТФ-азы усиливает (серин 616) или 
уменьшает (серин 637) сродство Drp1 к OMM и её 
рецепторным молекулам [68]. Место деления для 
привлечения Drp1 в митохондриях отмечено эн-
доплазматическим ретикулумом (ЭПР). ЭПР об-
волакивает митохондрии и обеспечивает их суже-
ние в местах контакта ЭПР-митохондрии [54, 69]. 
Ключевую роль играет связанный с ЭПР белок ин-
вертированный формин 2 (inverted formin 2 – INF2), 
который, контролируя сборку актина, вызывает су-
жения ещё до привлечения Drp1 в митохондрии [69].
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Figure 3.
Mitochondrial fu-
sion and fi ssion and 
cellular activity.

Примечание.

АФК – активные формы кислорода. ЭПР – эндоплазмати-
ческий ретикулум. CL (cardiolipin) – кардиолипин – фос-
фолипид, который является важным компонентом вну-
тренней мембраны митохондрий. Drp1 (dynamin- related 
protein 1) – белок- регулятор митохондриальной динамики. 
Fis1 (Fission 1) – белок митохондриального деления 1. Mff 
(mitochondrial fission factor) – белок внешней митохон-
дриальной мембраны, который служит основным моле-
кулярным посредником, регулирующим фрагментацию 
митохондрий при их делении. Mfn1 (mitofusins 1) – мито-
фузин 1; Mfn2 (mitofusins 2) – митофузин 2; митофузин 1 

и митофузин 2 убиквитинируются PINK1/parkin- зависимым 
образом при индукции митофагии. Opa1 (Optic Atrophy-1) – 
динаминоподобный белок, локализуется во внутренней 
мембране митохондрий, регулирует слияние митохондрий 
и структуру крист, способствует синтезу АТФ и апоптозу. 
OMA1 – митохондриальный фермент металлоэндопепти-
даза, локализуется во внутренней мембране митохондрий. 
YME1L (YME1-Like Protein 1) – фермент АТФ-зависимая метал-
лопротеаза, участвует в поддержании структуры митохон-
дрий, катализирует деградацию белков в межмембранной 
области митохондрий.
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Митохондриальный биогенез

Механизм биогенеза митохондрий
Для поддержания оборота, качества и количества 
митохондрий необходим митохондриальный био-
генез, который строго регулируется коактиватором 
пероксисом PGC-1. Одному из этих белков – PGC-1α 
(peroxisome proliferator- activated receptor γ co-activa-
tor 1α) принадлежит наиболее значимая роль в регу-
ляции биогенеза митохондрий. Митохондриальный 
транскрипционный фактор А (mitochondrial tran-
scription factor A – TFAM) управляет репликацией, 
транскрипцией и поддержанием mtDNA [70, 71]. 
PGC-1α может активировать ядерный респиратор-
ный фактор 1 и связываться с ним на промоторе 
TFAM, тем самым стимулируя синтез митохон-
дрий. Кроме того, PGC-1α коактивирует ядерные 
рецепторы PPAR (Peroxisome proliferator- activated 
receptor), которые регулируют экспрессию генов 
в клетке, индуцируя экспрессию митохондриаль-
ного фермента CPT-1 (Carnitine palmitoyltransferase 
I) и белка UCP-2 (Mitochondrial uncoupling proteins), 

которые отвечают за β-окисление жирных кис-
лот – FAO (Fatty acid beta-oxidation) и отключение 
потребления кислорода от синтеза АТФ [72, 73]. 
AMPK (Activated Protein Kinases) и фермент Sirt-1, 
расположенные преимущественно в клеточном 
ядре – это два метаболических сенсора, которые 
непосредственно модулируют активность PGC-1α 
посредством фосфорилирования и деацетилирова-
ния соответственно. Более того, PGC-1α необходим 
для индукции ферментов, уничтожающих АФК, 
включая GPx-1 и SOD2 [74].

Ремоделирование митохондрий и биогенез яв-
ляются важными механизмами адаптации к кле-
точному стрессу и метаболическим изменениям 
(рис. 4) [75].

Таким образом, биогенез митохондрий – это ре-
зультат транскрипционных и трансляционных 
синтезов, которые происходят как непосредствен-
но в митохондриях, так и в ядре.

Контроль качества митохондрий
Гомеостаз митохондрий основан на координации 
всех происходящий в них действий и регулируется 
двумя процессами, которые выполняют проти-
воположные функции: аутофагией митохондрий, 
называемой митофагией, когда дефектные мито-
хондрии избирательно устраняются лизосомами, 

и биогенезом митохондрий, при котором новые 
митохондрии генерируются из существующих (ми-
тохондриальный биогенез) [76]. При этом PGC-1α 
присоединяется к хроматину и служит плейотроп-
ным регулятором множества путей, взаимодей-
ствуя с ядерными рецепторами или активируя 
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динамики.

Figure 4.
Schematic diagram 
of mitochondrial 
dynamics.

Примечание.

Митохондриальная динамика, повреждение и деградация, 
а также зависимая от митохондрий гибель клеток в результате 
экспрессии токсичных белков. Митохондрии являются частью 
сети, которая формируется путем слияния или фрагментирует-
ся на отдельные органеллы путем деления. Они транспортиру-
ются вдоль цитоскелета. Поврежденные митохондрии стано-
вятся мишенью для цитоплазматических белков, включая Ybh3 
и Mmi1, которые продуцируют АФК или высвобождают белки 
в цитозоль, включая цитохром С, Aif1 и Nuc1, вызывая апоптоз 
и некроз. Митофагия и протеасомозависимые пути удаляют 

поврежденные митохондрии, а митохондриальный биогенез 
и ретроградная передача сигналов участвуют в пополнении 
и восстановлении митохондриального пула, соответственно. 
Токсичные белки вызывают повреждение митохондрий и ги-
бель клеток: они могут препятствовать слиянию, делению 
и подвижности митохондрий, или могут прерывать деградацию 
митохондрий, вызывая «летальную митофагию», или могут 
непосредственно влиять на функцию митохондрий.
АФК – активные формы кислорода; ТМПМ – трансмембранный 
потенциал митохондрий; mtDNA – митохондриальная ДНК.
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факторы транскрипции, тем самым способствуя 
биогенезу митохондрий и метаболической актив-
ности [71, 77, 78]. Все эти процессы образуют дина-
мическую сеть, которая осуществляет «контроль 
качества» митохондрий и восстанавливает го-
меостаз во время недостатка энергии или после 
повреждения митохондрий.

Кроме того, на динамику митохондрий могут 
влиять АФК, которые, например, инициируют 
митофагию, вызывая перемещение Parking из 
цитоплазмы в поврежденные митохондрии и ак-
тивируя путь PINK1/Parkin, которые являются 
крупными ГТФазами, играют решающую роль 

в убиквитинировании – процессе, при котором 
молекулы помечаются убиквитином для последу-
ющей деградации в протеасомах или лизосомах 
[79]. Экзогенное добавление АФК способствует 
фрагментации митохондрий в фибробластах [80].

Митохондриальная дисфункция в основном 
включает в себя следующие аспекты: 1). Нарушение 
«контроля качества» митохондрий, при котором 
наблюдается дисбаланс в митохондриальной ди-
намике, аномалии в митохондриальном биогенезе 
и изменения в митофагии. 2). Накопление АФК. 3). 
Повреждение mtDNA. На рис. 5 показаны виды 
митохондриальных дисфункций.

Нарушение контроля качества митохондрий
Для нормального функционирования клетке не-
обходимо поддерживать популяцию митохондрий, 
способных выполнять возложенные на них функ-
ции. Как ключевые процессы контроля качества 
митохондрий в клетках действуют несколько тесно 
взаимосвязанных механизмов, включая митохон-
дриальную динамику (слияние и деление), регу-
лируемых белками Drp1 и Mfn2 соответственно, 
а также макроаутофагию (митофагию), осущест-
вляемую белками BNIP3 (BNIP3 – BCL2/adenovirus 
E1B 19 kDa protein- interacting protein 3), BNIP3L/NIX 

(BNIP3L/NIX – BNIP3-like), PINK1 (PINK1 – Serine/
threonine PTEN-induced putative kinase 1 (PINK1) 
и Parkin [35, 81].

Процессы контроля качества митохондрий не 
допускают накопление поврежденных органелл 
в клетке, что, в частности, препятствует аккуму-
ляции АФК, которые, в свою очередь, способны 
стимулировать развитие различных заболеваний. 
Защита от разрушительного действия АФК реа-
лизуется клетками посредством ферментативной 
антиоксидантной системы (рис. 2).

Митофагия

Молекулярные механизмы, ведущие к митофагии
Макроаутофагия митохондрий (митофагия) – это 
процесс самодеградации, который обычно сти-
мулируется в условиях недостатка питательных 
веществ или клеточного стресса. Во время ауто-
фагии белки, макромолекулы и/или органеллы 
поглощаются двухмембранной везикулой, назы-
ваемой аутофагосомой, которая в конечном итоге 
сливается с лизосомой, где происходит деградация 
подлежащего удалению содержимого [35, 82].

Митофагия обеспечивает избирательное уда-
ление поврежденных или дисфункциональных 
митохондрий.

Распад внутриклеточного материала позволя-
ет рециркулировать необходимым строительным 
блокам для метаболических и биосинтетических 

процессов в клетках. Как важный – хотя и не уни-
кальный – механизм для избирательной маркировки 
предназначенных для деградации аутофагическим 
аппаратом цитоплазматических веществ, действу-
ет убиквитинирование. Убиквитинированные 
мишени затем распознаются специфическими 
рецепторами аутофагии (p62/SQSTM1 и оптиней-
рин (OPTN) [83], которые способны связывать 
как убиквитин, так и липидированные члены се-
мейства проаутофагических белков ATG8 (LC3A/
LC3B/LC3C/GABARAP/GABARAPL1/GABARAPL2 
(GABARAP – Gamma-aminobutyric acid receptor- 
associated protein; GABARAPL1 – GABARAP-like 1; 
GABARAPL2 – GABARAP-like 2) через их домен, 
взаимодействующий с LC3 (LIR) [84].
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Figure 5.
Diff erent types of mitochondrial dysfunction.
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Сигнальные пути, участвующие в регуляции митофагии
Перепроизводство АФК и повреждение митохон-
дриальных белков, а также повреждение mtDNA 
могут привести к необратимой деполяризации 
мембран митохондрий и снижению ТМПМ, что 
является характерными признаками поврежде-
ния или дисфункции митохондрий. В этих ус-
ловиях митофагия уменьшает высвобождение 
(утечку) mtDNA и выработку свободных радика-
лов путем разрушения поврежденных митохон-
дрий и подавляет воспалительную реакцию, вы-
званную повреждением молекулярных структур 
(DAMPs), и последующее вторичное повреждение 
печени.

На сегодняшний день клеточная митофагия 
осуществляется с помощью путей Pink1/Parkin, 
BNIP3L/Nix и FUN14 [85]. Pink-1 обычно не обнару-
живается в здоровых митохондриях, но накаплива-
ется во внешней мембране митохондрий в ответ на 
деполяризацию мембраны. Он привлекает Parkin из 
цитозоля в поврежденные митохондрии и активи-
рует активность убиквитинлигазы E3 Parkin, после 
чего Parkin убиквитинирует белки внешней мембра-
ны митохондрий, привлекая адаптеры аутофагии, 
включая SQSTM1/p62, белки гена BRCA1 (NBR1) 
и оптинейрина, которые связываются с LC3 в ауто-
фагосомах, приводя к деградации митохондрий [86].

Митофагия и повреждение печени
Митофагия – это важнейший защитный меха-
низм, который предотвращает гибель клеток 
и способствует их восстановлению. Однако не-
своевременное удаление поврежденных мито-
хондрий усугубляет отложение липидов и пере-
кисное окисление в гепатоцитах. Ингибирование 
митофагии, опосредованное BNIP3 или Parkin, 
способствует утечке mtDNA из цитоплазмы в ма-
крофаги и активации Ccl4-индуцированного 
пути cGAS/STING/NLRP3 и, следовательно, по-
вышает уровни интерферона-β, фактора некроза 

опухоли-α и интерлейкина-6 в печени, тем самым 
усугубляя её повреждение и развитие фиброза 
(рис. 6) [87, 88].

Следует отметить, что перекрестная регуля-
ция митофагии и митохондриального синтеза 
является важным механизмом, участвующим 
в  восстановлении тканей после ишемически- 
реперфузионного повреждения. Нарушение ау-
тофагии усугубляет оксидативный стресс и увели-
чивает некротическую и апоптотическую гибель 
клеток при внутрипеченочном повреждении.
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регулирующий клеточный цикл. cGAS/sting/NLPR3 – сиг-
нальные пути.

Рисунок 6.
Роль митофагии 
при заболеваниях 
печени.

Figure 6.
The role of mitopha-
gy in liver diseases.

Заболевания печени и митохондриальная дисфункция

Печень является основным органом обмена ве-
ществ в организме и обладает высокой способ-
ностью к регенерации и самовосстановлению. 
Каждый гепатоцит содержит 1000–2000 митохон-
дрий. Однако дефекты митохондрий или сниже-
ние активности этой органеллы могут снижать 
синтез АТФ, вызывать нарушение иммунной ре-
гуляции, стимулировать запрограммированную 
гибель клеток и задерживать регенерацию пече-
ни после её повреждения [89]. Дефекты в мито-
хондриальных функциях не только влияют на 

гомеостаз клеток, биоэнергетику и окислительно- 
восстановительный контроль, но и имеют решаю-
щее значение для гибели клеток. Такие митохон-
дриальные дисфункции, как нарушение ТМПМ, 
снижение активности комплексов дыхательной 
цепи митохондрий и снижение выработки АТФ 
способствуют развитию фиброза печени, цирроза 
и рака [90, 91, 92].

Таким образом, изучение механизма митохон-
дриальной дисфункции, участвующей в развитии 
заболеваний печени, имеет большое значение.
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Дисбаланс в митохондриальной динамике при вирусных гепатитах
Заражение вирусом гепатита С (HCV) усиливает 
оксидативный стресс с помощью нескольких меха-
низмов. Вирусные белки, в первую очередь ядерные 
белки, E1, E2, NS3, NS4B и NS5A, усиливают оксида-
тивный стресс за счет ингибирования комплексов 
в транспортной цепи митохондрий [93], изменения 
гомеостаза внутриклеточного кальция [93, 94], сни-
жения антиоксидантной защиты [95] и усиления 
регуляции таких ферментов, как Nox4, которые 
генерируют АФК [96]. Основной белок HCV путем 
модулирования генов, которые участвуют в ре-
гуляции клеточного цикла и антиоксидантной 
защите, противостоит аутофагии и апоптозу, вы-
званным оксидативным стрессом, способствуя об-
разованию ГЦК и усилению выработки АФК [97, 98, 
99]. Белки HCV повышают уровень железа в печени 
за счет снижения уровня регулятора всасывания 
железа гепсидина, что приводит к оксидативно-
му стрессу, вызванному железом [93, 100]. Также 
было обнаружено, что прооксидантное состояние 
способствует распространению HCV инфекции 
за счет повышенного высвобождения вирусных 
частиц в результате аутофагии [101], а также вызы-
вает реактивацию репликации HCV в гепатоцитах 
(рис. 7А) [102].

Длительное инфицирование вирусом гепати-
та В (HBV) приводит к нарушению цитоскелета 
и морфологическим аномалиям митохондрий, 
включая потерю правильной трубчатой или кру-
глой формы, исчезновение крист и набухание 
(рис. 2) [103]. Изменения в митохондриальной 
динамике в сторону усиленного деления и ми-
тофагии, вызванные репликацией HBV, помога-
ют подавлять врожденные иммунные реакции 

в клетках хозяина и способствуют репликации 
вируса и персистенции инфекции [104, 105]. При 
этом обнаруживаются повышенные сывороточ-
ные показатели оксидативного стресса (гидрок-
сил, перекись водорода, синглетный кислород, 
гидроперекись липидов и супероксид) и снижены 
сывороточные показатели антиоксидантов (общий 
сульфгидрил, витамин С, мочевая кислота, вита-
мин Е, билирубин) [106]. Оксидативный стресс 
при HBV-инфекции опосредуется белком HBV X 
(HBx) посредством подавления регуляции генов, 
кодирующих белки, которые противодейству-
ют оксидативному стрессу (MTH1, MTH2, MTH3 
и NUDT5), что приводит к накоплению их про-
оксидантных субстратов [107]. Гиперпродукция 
АФК вызывает повреждение mtDNA [108], инакти-
вирует опухолевые супрессоры, такие как RUNX3 
[109], и активирует факторы транскрипции, такие 
как ядерный фактор каппа В (NF-κB) и STAT-3. 
Активация NF-κB приводит к ингибированию 
гибели клеток за счет индукции антиапоптоти-
ческих генов, таких как Bcl- XL, c- FLIP и A1/Bfl -1, 
и экспрессии генов- антиоксидантов, включая тя-
желую цепь ферритина и супероксиддисмутазу, 
которые повышают выживаемость клеток, что 
приводит к таким патологическим состояниям, 
как фиброз печени и ГЦК. Выработка АФК также 
жестко регулируется вирусными белками HBx 
и HBeAg, особенно на ранних стадиях инфекции, 
что позволяет избежать врожденных иммунных 
реакций и приводит к возникновению хрониче-
ской инфекции. Подобно HCV, распространение 
HBV также опосредуется АФК-зависимыми ме-
ханизмами [1].
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Дисбаланс в митохондриальной динамике 
при неалкогольной жировой болезни печени
Значительная роль митохондриальной динами-
ки и при НАЖБП. Диета с высоким содержанием 
жиров или холестерина вызывает структурные де-
фекты митохондрий печени и дисбаланс в слиянии/
делении, на что указывают потеря крист, разрежен-
ный матрикс, низкие уровни OPA1 и MFN1/2 и по-
вышенная экспрессия Drp-1 [110]. Исследования 
на животных раннего возраста показало, что ин-
гибирование Drp1 гепатоцитов уменьшает простой 
стеатоз печени. При этом возможным основным 
механизмом является ингибирование деления ми-
тохондрий гепатоцитов, что приводит к увеличе-
нию утечки протонов. Это не только усиливает 
окисление липидов, но и снижает выработку АФК 
[111]. Однако у животных «пожилого» возраста бло-
када Drp1 усугубляет неалкогольный стеатогепатит 
(НАСГ), вызванный диетой с высоким содержанием 
жиров и фруктозы, при этом усиливается внутри-
печеночная липотоксичность, вызванная нако-
плением неэтерифицированных жирных кислот, 

и усиливается интегрированная реакция мито-
хондрий на стресс в печени, несмотря на снижение 
общего содержания внутрипеченочных липидов 
[112]. Этот противоречивый результат позволяет 
предположить, что частичное ингибирование Drp1 
может быть эффективным только для предотвраще-
ния простого стеатоза, но оно вредно для пациентов 
с диагностированным НАСГ. Дисбаланс в митохон-
дриальной динамике и накопление печеночных 
липидов и АФК могут усиливать друг друга и об-
разовывать порочный круг, что в конечном итоге 
усугубляет повреждение печени (рис. 6А).

Несбалансированная динамика митохондрий 
сопровождается избыточной продукцией АФК, 
активирующих звёздчатые клетки печени, что 
ведёт к фиброзу печени. Фиброз печени также 
развивается вследствие воспаления, вызванного 
нарушением врождённых иммунологических ре-
акций вследствие дисбаланса митохондриальной 
динамики (рис. 7Б).

Митохондриальный биогенез при заболеваниях печени
Установлено, что нарушение функции OXPHO яв-
ляется основной причиной резистентности к ин-
сулину, а печеночная инсулинорезистентность 
часто связана с накоплением триглицеридов в ге-
патоцитах и развитием НАЖБП [113]. Биогенез 
митохондрий также связан с  энергетическим 
обменом. Активация путей PGC-1α/PPARγ/PLIN 
способствует синтезу митохондрий и  предот-
вращает дисфункцию OXPHO и  липидоз при 
экспериментальной НАЖБП [114]. Ресвератрол 
и гинзенозид усиливают биосинтез митохондрий 
печени и улучшают функциональную способность 
OHPXO и чувствительность к инсулину, способ-
ствуя Sirt-1-опосредованному деацетилированию 
PGC-1α [115]. Возможный основной механизм за-
ключается в том, что гепатоциты подвергаются 

энергетическому метаболическому перепрограм-
мированию, чтобы адаптироваться к снижению 
окислительного фосфорилирования: увеличение 
анаэробного гликолиза в качестве компенсации за 
выработку АТФ и повышение утилизации жирных 
кислот и глюкозы (рис. 8).

Одному из этих белков – PGC-1α (peroxisome 
proliferator- activated receptor γ co-activator 1α) 
принадлежит наиболее значимая роль в регуля-
ции биогенеза митохондрий. Митохондриальный 
транскрипционный фактор А (mitochondrial tran-
scription factor A – TFAM) управляет репликацией, 
транскрипцией и поддержанием mtDNA

Таким образом, умеренное повышение или сни-
жение активности OXPHO может быть полезным 
для улучшения нарушенных метаболических 
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АФК – активные формы кислорода. ГЦК – гепатоцел-
люлярная карцинома. Цикл ТКК – цикл трикарбоновых 
кислот. НАЖБП – неалкогольная жировая болезнь 
печени. AMPK (Activated Protein Kinases) – активирован-
ные протеинкиназы, активируют фосфорилирование. 
mtDNA – митохондриальная ДНК. NRFs – транскрипцион-
ные факторы биогенеза митохондрий. OXPHO (oxidative 

phosphorylation) – окислительное фосфорилирование. 
Sirt-1 – фермент, расположденный преимуществен-
но в ядре, активирует деацетилирование. PGC-1α 
(peroxisome proliferator- activated receptor γ co-activator 
1α) – активатор рецепторов. TFAM (mitochondrial 
transcription factor A – митохондриальный транскрипци-
онный фактор.

Рисунок 8.
Роль митохондри-
ального биогенеза 
при заболеваниях 
печени.

Figure 8.
The role of mito-
chondrial biogene-
sis in liver diseases.
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процессов. Однако неясно, способствует ли дли-
тельное снижение активности OXPHO улучшению 
состояния при НАЖБП.

Прогрессирование от простого стеатоза печени 
до выраженного НАСГ строго связано со сниже-
нием функции митохондрий, включая снижение 
биогенеза, FAO и OXPHO [116]. Длительный холе-
стаз подавляет активацию AMPK/Sirt-1 и не акти-
вирует PGC-1α, что еще больше снижает биогенез 
митохондрий и вызывает истощение mtDNA, что 
приводит к необратимому повреждению печени 
[90]. Напротив, специфичная для печени сверхэкс-
прессия PGC-1α заметно улучшает функцию мито-
хондрий печени, увеличивает полный цикл FAO 
и трикарбоновых кислот и уменьшает накопление 
липидов как in vivo, так и in vitro [117]. Аналогичным 
образом, хлорогеновая кислота ингибирует ак-
тивацию звездчатых клеток печени, стимулируя 
биогенез митохондрий, и снижает индуцирован-
ную HMGB1 продукцию внеклеточного матрикса 
в синусоидальных эндотелиальных клетках печени, 
уменьшая накопление липидов и фиброз [118].

PGC-1α может действовать как опухолевый су-
прессор при ГЦК, и он выполняет свою функцию, 
усиливая биогенез митохондрий, опосредуя глю-
конеогенез и инициируя путь апоптоза [119, 120]. 
PGC-1β обладает высокой степенью идентичности 
последовательности и функцией, сходной с PGC-1α, 
в резистентных к сорафенибу клетках ГЦК. В ответ на 
лечение сорафенибом усиленная деградация PGC-1β 
сопровождается снижением содержания митохон-
дрий и их дыхательной способности, что приводит 
к снижению выработки АФК и лекарственной устой-
чивости. [121]. Аналогичным образом, пероральный 
прием мелатонина ослабляет CCl4-индуцированный 
фиброз печени, улучшая процесс набухания ми-
тохондрий и предотвращая нарушения биогенеза 
и митофагии митохондрий [122].

Митохондрии играют важную роль в разви-
тии алкогольной болезни печени. Употребление 

алкоголя способствует фрагментации и увели-
чению митохондрий. Наличие мегамитохондрий 
в биоптатах печени больных алкоголизмом или 
мышей, которых кормили алкоголем, считается 
важным признаком алкогольной болезни печени 
[123]. Белок Drp-1, формирующий митохондрии, 
который служит движущим фактором фраг-
ментации органелл, является основным меди-
атором, вызывающим структурные изменения. 
Специфическая для печени инактивация Drp-1 
усиливает развитие мегамитохондрии и  сни-
жает вызванную алкоголем гепатотоксичность. 
Предполагается, что появление мегамитохондрий 
является адаптивным механизмом, который мо-
жет противодействовать чрезмерному делению 
и митофагии, и что использование ингибитора 
Drp-1 может быть многообещающим методом ле-
чения алкогольной болезни печени [124]. Однако 
было показано, что у мышей с блокадой Drp-1, 
получавших алкоголь, наблюдалось более серьез-
ное повреждение печени и выраженный фиброз. 
Показано, что мегамитохондрии трудно удалить 
путем митофагии из-за их размера, а накопле-
ние мегамитохондрий приводит к накоплению 
нарушенной mtDNA, что еще больше активиру-
ет воспаление [125]. Равновесие между делением 
и слиянием митохондрий, а не просто усиленное 
образования мегамитохондрий, вероятно, име-
ет важное значение для поддержания клеточной 
функции. Таким образом, потеря Drp-1 может, 
в конечном итоге, сопровождаться дезадаптацией 
митохондрий и нарушением митофагии, что при-
водит к нарушению регуляции иммунных реакций, 
которые усугубляют повреждение печени.

Митохондриальный биогенез у частвует 
в адаптивном ответе на метаболический стресс, 
вызванный алкоголем. Кратковременное употре-
бление алкоголя усиливает регуляцию PGC-1α 
и митохондриального дыхания, тем самым спо-
собствуя катаболизму алкоголя в печени [126].

Заключение

Чрезвычайно важно поддержание целостности 
и гомеостаза митохондрий, что достигается за счет 
постоянного их слияния и деления. Слияние мито-
хондрий позволяет осуществлять перенос генных 
продуктов между митохондриями для оптималь-
ного функционирования, особенно в условиях 
метаболического стресса и воздействия окружаю-
щей среды. С другой стороны, расщепление имеет 
решающее значение для деления митохондрий 
и контроля качества. Дисбаланс между этими 
двумя процессами связан с развитием различных 
заболеваний.

Динамика митохондрий регулируется двумя 
наборами противоположных процессов: слия-
нием и расщеплением митохондрий, биогенезом 
и деградацией митохондрий (включая митофа-
гию), а также такими процессами, как внутрикле-
точный транспорт. Эти процессы поддерживают 
митохондриальный гомеостаз, регулируют фор-
му, объем и функцию митохондрий и все чаще 
рассматриваются как важнейшие компоненты 

клеточной реакции на стресс. Динамика мито-
хондрий зависит от стадии развития и возрас-
та, типа клеток, факторов окружающей среды 
и генетического фона. Многие гены, ответствен-
ные за митохондриальный гомеостаз, являются 
генами, детерминирующими болезни. Дефицит 
этих генов часто приводит к повышению чувстви-
тельности к воздействию окружающей среды, но 
при определенных обстоятельствах может также 
способствовать защите. Ингибирование митохон-
дриальной динамики также влияет на устранение 
непоправимых повреждений mtDNA и передачу 
мутаций в mtDNA.

Динамика митохондрий играет сложную роль 
в определении судьбы клеток, и ее роль зави-
сит от типа заболевания и конкретных условий. 
Поддержание баланса между делением и слия-
нием митохондрий, а не просто блокирование 
одного или другого, является многообещающим 
терапевтическим подходом при заболеваниях 
печени.
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