Аспекты диагностики эмбриональных опухолей центральной нервной системы у детей: что должен знать детский врач?

Диникина Ю. В.¹, Смирнова А.Ю¹., Осипов Н. Н.⁴.⁵, Спельников Д. М.³, Моргачева Д. А.¹, Желудкова О. Г.², Белогурова М. Б.¹, Никитина И. Л.¹

- ¹ ФГБУ «Национальный медицинский исследовательский центр им. В. А. Алмазова» МЗ РФ, (ул. Аккуратова, д. 2, Санкт-Петербург, 197341, Россия)
- ² ГБУЗ г. Москвы «Научно-практический центр специализированной медицинской помощи им. В.Ф. Войно-Ясенецкого ДЗМ», (ул. Авиаторов, 38, г. Москва, 119620, Россия)
- ³ TOO «Darwin Tech Labs», (пр-т Мангилик Ел, 55/13, г. Астана, Казахстан)
- ⁴ ФГБУН «Санкт-Петербургское отделение Математического института им. В. А. Стеклова» РАН Российской Федерации, (наб. р. Фонтанки, 27, Санкт-Петербург, 191023, Россия)
- ⁵ Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет» (Университетская набережная, д. 7/9, г. Санкт-Петербург, 199034, Россия)

Для цитирования: Диникина Ю. В., Смирнова А.Ю., Осипов Н. Н., Спельников Д. М., Моргачева Д. А., Желудкова О. Г., Белогурова М. Б., Никитина И. Л. Аспекты диагностики эмбриональных опухолей центральной нервной системы у детей: что должен знать детский врач? Экспериментальная и клиническая гастроэнтерология. 2024; 226 (6): 47–56. DOI: 10.31146/1682-8658-ecg-226-6-47-56

⊠ Для переписки: Диникина Ю.В. dinikinayulia@mail.ru **Смирнова А.Ю., врач–детский** онколог отделения химиотерапии онкогематологических заболеваний и трансплантации костного мозга для детей

Моргачева Д. А., врач–детский онколог отделения химиотерапии онкогематологических заболеваний и трансплантации костного мозга для детей

Диникина Ю. В., к. м. н., заведующая отделением химиотерапии онкогематологических заболеваний и трансплантации костного мозга для детей, зав. НИЛ детской нейроиммуноонкологии НЦМУ «Центр персонализированной медицины» **Желудкова О. Г., д.** м. н., профессор

Белогурова М. Б., д. м. н., профессор, ведущий научный сотрудник Института гематологии

Спельников Д. М., старший научный сотрудник

Осипов Н. Н., к. ф.- м. н., старший научный сотрудник лаборатории математического анализа; научный сотрудник лаборатории «Вероятностные методы в анализе»

Никитина И.Л., д. м. н., профессор, заведующая НИЛ детской эндокринологии

* Иллюстрации 2, 5, 6 — на цветной вклейке в журнал (стр. I).

Резюме

Актуальность. Ранняя диагностика опухолей ЦНС у детей имеет важное значение в отношении прогноза по заболеванию, а также отдаленных исходов лечения, определяющих последующее качество жизни. Преобладание эмбриональных опухолей (ЭО) в раннем детском возрасте, в наибольшей степени, актуализирует проблему своевременной верификации диагноза. К факторам, способствующим удлинению сроков диагностики у представленной когорты пациентов, относятся невозможность адекватной вербализации жалоб маленькими детьми, широкий спектр клинических проявлений, в том числе неспецифических, относительно невысокая встречаемость ЭО в популяции и низкий уровень онкологической настороженности специалистов. Это определяет необходимость более внимательной оценки клинической картины и ассоциированных симптомов заболевания врачами всех специальностей и, особенно специалистами первичного звена здравоохранения.

EDN: OIGYHY

Цель исследования. Анализ клинических симптомов в дебюте заболевания у детей с ЭО ЦНС с целью определения их ассоциаций с характеристиками опухолевого процесса (локализация, нозология) и особенностями пациента.

Материалы и методы. Выполнен ретроспективный анализ данных 124 пациентов детского возраста с ЭО ЦНС, которые получали лечение в период с 2010 по 2023 год в отделениях детской онкологии ФГБУ «НМИЦ им. В. А. Алмазова» и ГБУЗ «СПб КНпЦСВМП(о) им. Н.П. Напалкова». Анализируемыми параметрами были возраст появления первичных жалоб, симптомы болезни на момент манифестации, длительность анамнеза и периода до верификации диагноза, локализация и гистологического тип опухолей. Для статистического анализа применялись точный тест Фишера, модифицированный критерий Пирсона, критерии Краскела—Уоллиса и Манна—Уитни, а также (для оценки длительности анамнеза) модель Кокса.

Результаты. Самым частым вариантом ЭО ЦНС в исследуемой группе была медуллобластома (МБ; 66,1%). Средний возраст пациентов по совокупности нозологий составил 61 месяц, преобладали мальчики (58%). Медиана возраста варьировалась в зависимости от гистологического типа опухоли, при этом максимальная на момент постановки диагноза была у пациентов с медуллобластомой — 72 месяца, наименьшая у детей с атипической тератоидно-рабдоидной опухолью (АТРО) — 9 месяцев. Обе медианы значимо отличаются от медианы (29 месяцев) для совокупности всех

остальных опухолей ($p = 6.53 \cdot 10^{-4}$ и p = 0.029, соответственно). Наиболее частыми симптомами у пациентов с ЭО были тошнота и рвота (68%), головная боль (50%) и нарушения походки (25,6%). Среди пациентов с ЭО с младшим возрастом ассоциировались такие симптомы, как увеличение окружности головы/выбухание родничка (p = 0.0016) и кривошея (p = 0.0057), а со старшим возрастом — головная боль ($p = 1.30 \cdot 10^{-9}$), тошнота и рвота (p = 0.019), диплопия (p = 0.0057), потеря массы тела (p = 0.017) и головокружение (p = 0.013). При этом головная боль выявлялась значимо чаще при медуллобластоме ($p = 2.60 \cdot 10^{-4}$) по сравнению с другими ЭО, и значимо реже при АТРО ($p = 1.51 \cdot 10^{-4}$), что может быть связано с возрастом пациентов. Выбухание родничка при медуллобластоме, в отличие от других ЭО, не наблюдалось, что также связано с возрастом. Судороги наблюдались при всех случаях нейробластомы ЦНС — значимо чаще (p = 0.034), чем при других ЭО. Наиболее частой локализацией опухолей была задняя черепная ямка (3ЧЯ) (83,6%). В когорте пациентов с ЭО локализация в 3ЧЯ ассоциировалась с головной болью (p = 0.05, пограничная значимость) и тошнотой/ рвотой (p = 0.040), а локализация в теменной области — с судорогами (p = 0.041). У 4 пациентов в когорте имела место бессимптомная манифестация заболевания и диагноз был установлен при плановом обследовании. Отсутствие симптомов ассоциировалось с локализацией вне ЗЧЯ (p = 0.011) и с младшим возрастом (p = 0.053, пограничная значимость). Диагноз устанавливался в достоверно более короткие сроки при наличии у детей таких симптомов как тошнота и рвота (p = 0.0017), парезы и параличи (p = 0.0059).

Заключение. У пациентов с ЭО ЦНС выявляются статистически достоверные взаимосвязи между возрастом, гистологическим типом опухоли, локализацией опухоли и некоторыми симптомами. Тот факт, что симптомы, наиболее часто встречающиеся в исследуемой когорте, не являются строго специфичными для опухолей ЦНС, определяет показания к внимательной оценке соматического и неврологического статуса ребенка и своевременному проведению нейровизуализации у детей при выявлении даже потенциальных симптомов, характерных для опухолей ЦНС.

Ключевые слова: дети, детская онкология, опухоли центральной нервной системы, симптомы, медуллобластома, АТРО, ранняя диагностика

Финансирование. Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (соглашение № 075–15–2022–301)

https://doi.org/10.31146/1682-8658-ecg-226-6-47-56

Diagnostic aspects of pediatric embryonal tumors of the central nervous system: what should know pediatrician

Yu. V. Dinikina¹, A. Yu. Smirnova¹, N. N. Osipov^{4,5}, D. M. Spelnikov³, D. A. Morgacheva¹, O. G. Zheludkova², M. B. Belogurova¹, I. L. Nikitina¹

- ¹ "Almazov National Medical Research Centre" of the Ministry of Healthcare of the Russian Federation, (St. Petersburg, 19734, Russia)
- ² V.F. Voino-Yasenetskiy Scientific and Practical Center of Specialized Healthcare for Children of the Department of Health of Moscow, (Moscow, 119620, Russia)
- ³ TOO «Darwin Tech Labs», (Astana, Kazakhstan)
- ⁴ St. Petersburg Department of V.A. Steklov Mathematical Institute of RAS, (St. Petersburg, 191023, Russia)
- ⁵ Saint-Petersburg State University, (7/9, Universitetskaya Emb., St. Petersburg, 199034, Russia)

For citation: Dinikina Yu. V., Smirnova A. Yu., Osipov N. N., Spelnikov D. M., Morgacheva D. A., Zheludkova O. G., Belogurova M. B., Nikitina I. L. Diagnostic aspects of pediatric embryonal tumors of the central nervous system: what should know pediatrician. *Experimental and Clinical Gastroenterology*. 2024; 226 (6): 47–56. (In Russ.) DOI: 10.31146/1682-8658-ecg-226-6-47-56

⊠ Corresponding author:

Yu.V. Dinikina dinikinayulia@mail.ru **A. Yu. Smirnova**, pediatric oncologist, Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children; ORCiD: 0000–0002–5293–9568

D. A. Morgacheva, pediatric oncologist, Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children; *ORCiD*: 0000–0001–9540–1162

Yu. V. Dinikina, Cand. of Sci. (Med.), Head of the Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children, Head of the Research Laboratory of Pediatric Neurology, Immunology and Oncology of the World-Class Research Center «Center for Personalized Medicine»; ORCID: 0000–0002–2003–0982

O. G. Zheludkova, Dr. of Sci. (Med.). Professor: ORCiD: 0000–0002–8607–3635

M. B. Belogurova, Dr. of Sci. (Med.), Professor, Leading Scientific Collaborator of the Research Laboratory of Pediatric Neurology, Immunology and Oncology of the World-Class Research Center «Center for Personalized Medicine»; *ORCiD*: 0000–0002–7471–7181

D. M. Spelnikov, Senior Research Fellow; ORCiD: 0000-0002-3475-1780

N. N. Osipov, Cand. Of Sci. (Meth.), Senior Research Fellow of St. Petersburg Department; ORCiD: 0000–0002–5391–3917

* Illustrations

2, 5, 6 to the article are on

the colored inset

of the Journal

(p. I).

I. L. Nikitina, Dr. Med. Sci., professor, Head of laboratory of pediatric endocrinology of the Institute of Endocrinology; ORCiD: 0000-0003-4013-0785

M. B. Belogurova, Dr. of Sci. (Med.), Professor, Leading Scientific Collaborator of Research Institute of Oncology and Hematology; ORCiD: 0000–0002–7471–7181

Summary

Background. Early identification of pediatric central nervous system (CNS) tumors is important in relation to disease prognosis, as well as long-term treatment outcomes, which determine subsequent quality of life. The predominance of embryonal tumors (ETs) in early childhood actualizes the problem of timely verification of the diagnosis. Factors contributing to the extension of diagnostic time in the presented patient's cohort include the inability to adequately verbalize complaints in young children, a wide range of clinical presentations, including nonspecific ones, the relatively low incidence of ET in the population and the low level of oncological alertness among specialists. This determines the need for a more careful assessment of the clinical manifestations and disease-associated symptoms by doctors of all specialties and, especially, primary care specialists.

Aim. Analysis of clinical symptoms at the disease's onset in pediatric CNS ET in order to determine their associations with the tumor's characteristics (site, hystologic type) and the patient's features.

Materials and methods. A retrospective analysis of data from 124 pediatric patients with CNS ET who received treatment from 2010 to 2023 in the departments of pediatric oncology of the Almazov National Medical Research Center and the St. Petersburg Scientific Research Center for Medical Sciences (o) named after. N. P. Napalkov. The analyzed parameters were the age of manifestation, initial symptoms, duration of the anamnesis and the period before verification of the diagnosis, localization and histological type of tumors. For statistical analysis, Fisher's exact test, modified Pearson test, Kruskal-Wallis and Mann-Whitney tests, as well as (to assess the duration of anamnesis) the Cox model were used.

Results. The most common type of CNS ET in the study group was medulloblastoma (MB; 66.1%). The average age of patients, in general, was 61 months, boys predominated (58%). The median age varied depending on the histological tumor type: the maximum was 72 months in patients with medulloblastoma and the minimum was 9 months in children with atypical teratoid rhabdoid tumor (ATRT). Both medians are significantly different from the total median (29 months) of all other tumors $(p = 6.53 \cdot 10 - 4)$ and p = 0.029, respectively). The most frequent symptoms in patients with ET were nausea and vomiting (68%), headache (50%), and gait disturbances (25.6%). Increased head circumference/bulging fontanel (p = 0.0016) and torticollis (p = 0.0057) were the most common symptoms associated with younger age. Headache (p = $1.30 \cdot 10-9$), nausea and vomiting (p = 0.019), diplopia (p = 0.0057), weight loss (p = 0.017) and dizziness (p = 0.013) were associated with older age. Headache was predominated symptom in medulloblastoma ($p = 2.60 \cdot 10-4$) compared to other ETs, and less common in ATRT ($p = 1.51 \cdot 10-4$), which may be due to the patient's age. Fontanel bulging in medulloblastoma, unlike other ET, was not observed, which is also associated with age. Seizures were observed in all cases of CNS neuroblastoma — significantly more often (p = 0.034) than in other ETs. The most common tumor location was the posterior cranial fossa (PCF) (83.6%). PCF localization was associated with headache (p = 0.05, borderline significance) and nausea/vomiting (p = 0.040). Parietal localization was associated with seizures (p = 0.041). Four patients in the cohort had asymptomatic disease's manifestations. The diagnosis was established by a routine screening examination. The absence of symptoms was associated with location outside the PCF (p = 0.011) and with younger age (p = 0.053, borderline significance). The diagnosis was established in a significantly shorter time if children had symptoms such as nausea and vomiting (p=0.0017), paresis and paralysis (p=0.0059).

Conclusion. In patients with CNS ETs, statistically significant relationships are revealed between age, histological type, tumor site and certain symptoms. Nevertheless, the absence of strictly specific clinical manifestation determines the indications for a careful assessment of the pediatric somatic and neurological status and timely neuroimaging in children when even potential symptoms typical for CNS tumors are identified.

Key words: children, pediatric oncology, tumors of central nervous system, symptoms, medulloblastoma, ATRT, early diagnostics

Funding. This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2022–301)

Введение

Эмбриональные опухоли являются самым частым вариантом опухолей ЦНС у детей от 0 до 4 лет и составляют до 12% от всех опухолей ЦНС у детей разных возрастных групп [1,2]. Являясь гетерогенной группой новообразований, они отличаются по возрасту возникновения, локализации, гистологическому

строению, молекулярно-генетическим характеристикам и прогнозу [3, 4, 5]. В классификации опухолей ЦНС всемирной организации здраво-охранения (ВОЗ) 2021 года ЭО ЦНС разделены на 2 группы — МБ и другие ЭО, куда включены АТРО, крибриформная нейроэпителиальная

опухоль, ЭО с многорядными розетками, нейробластома ЦНС с активацией FOXR2, опухоль ЦНС с внутренней тандемной дупликацией BCOR, эмбриональная опухоль ЦНС без дополнительной спецификации [6].

ЭО характеризуются преимущественно высокой степенью злокачественности (grade 4), ранним возрастом манифестации, предрасположенностью к лептоменингеальному метастазированию, а также высоко вариабельной клинической картиной [3]. Симптомы заболевания, как правило, взаимосвязаны с возрастом ребенка на момент дебюта, локализацией, распространением и гистологическим типом

опухоли. Часто регистрируются неврологические и/или офтальмологические нарушения, тем не менее не редко имеют место лишь неспецифические симптомы, характерные также для других заболеваний. Гетерогенность симптомов, неспецифическая клиническая картина и редкая встречаемость патологии в популяции могут приводить к более длительному диагностическому поиску и отложенной постановке диагноза, что ухудшает прогноз, повышает риски осложнений и может приводить к снижению качества жизни пациентов. Для своевременной диагностики необходим рационализированный выбор визуализирующих методов исследования [7–10].

Материалы и методы

Выполнена ретроспективная оценка данных 124 пациентов с ЭО ЦНС, получавших лечение на базе отделений детской онкологии ФГБУ «НМИЦ им. В.А. Алмазова» и ГБУЗ «СПб КНпЦСВМП(о) им. Н.П. Напалкова» в период с 2010 по 2023 годы. Критерием включения был верифицированный диагноз одного из гистологических вариантов ЭО ЦНС. Основная база данных была создана в формате Excel с учетом следующих параметров: пол и возраст ребенка на момент постановки диагноза в месяцах, инициальные симптомы, длительность анамнеза в месяцах (время от появления симптомов до оперативного вмешательства), локализация и гистологический тип опухоли согласно классификации опухолей ЦНС ВОЗ 2021. Были оценены все возможные ассоциации между следующими группами параметров: возраст — тип опухоли, возраст — симптомы заболевания, симптомы заболевания — тип и локализация опухоли, симптомы — длительность анамнеза. В статье описаны все те из них, которые оказались статистически значимыми.

Статистическая обработка данных была выполнена в программной среде R с использованием

дополнительных пакетов [11-14]. Для сравнения возраста пациентов при разных типах опухолей был применен общий критерий Краскела-Уоллиса с последующим их попарным сравнением с помощью критерия Манна-Уитни и коррекцией Бонферрони, а при оценке связи между возрастом пациента и клиническими проявлениями заболевания использован критерий Манна-Уитни. Для определения ассоциаций между клиническими проявлениями с локализацией и типом опухоли построены таблицы сопряженности, для которых применен либо точный тест Фишера, либо модифицированный критерий Пирсона: выбор критерия в каждом конкретном случае обусловлен правилами, сформулированными в [15, 16, 17]. Также применялась коррекция Бонферрони и вычислялись отношения шансов. При анализе влияния клинических проявлений на длительность анамнеза была использована модель пропорциональных рисков Кокса [18], с последующим построением кривых Каплана-Мейера [19] для значимых факторов. Статистически значимыми считались различия при p < 0.05.

Результаты

В ретроспективный анализ включено 124 пациента, из них 52 девочки (42%) и 72 мальчика (58%). Средний возраст пациентов составил 61 месяц, медиана возраста — 45,5 месяцев (0 месяцев — 215 месяцев). У всех больных выполнялось оперативное вмешательство с целью удаления или биопсии опухоли с последующим гистологическим исследованием, что являлось основой для верификации диагноза.

При анализе данных анамнеза жизни в преобладающем большинстве случаев значимых факторов, предрасполагающих к развитию эмбриональных опухолей ЦНС, выявлено не было. У троих пациентов (2,4%) были диагностированы синдромы предрасположенности к развитию опухолевых заболеваний, из них: синдром предрасположенности к рабдоидным опухолям (пациенты с диагнозом АТРО) — 2 и синдром Ли-Фраумени у пациента с SHH подтипом МБ и отягощенным онкологическим семейным анамнезом — 1. Стоит отметить, что молекулярно-генетическое исследование для исключения герминальных мутаций проводилось

лишь в 20% случаев, преимущественно у пациентов раннего возраста с диагнозом АТРО.

При распределении пациентов в зависимости от гистологического варианта наиболее частым диагнозом была МБ, n=82 (66,1%), реже — ATPO, n=25 (20,2%), ЭО ЦНС без дополнительной спецификации, n=10 (8,1%), ЭО с многорядными розетками, n=5 (4%), нейробластома ЦНС, n=2 (1,6%).

Медиана возраста пациентов с МБ на момент постановки диагноза составила 72 месяца (3–215 месяцев), с АТРО — 9 месяцев (0–138 месяцев), с другими ЭО ЦНС — 29 месяцев (1,5–171 месяц) (таб.1, рис. 1).

Представленные данные в таблицах 1, 2 и на рисунке 1, с высокой статистической значимостью демонстрируют различие возрастных категорий пациентов с МБ, АТРО и другими опухолями, которые характеризуются старшим, младшим и средним возрастами, соответственно.

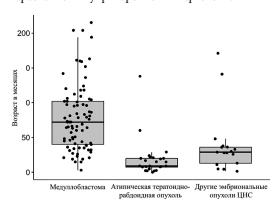

Из 124 пациентов исследуемой когорты анамнез заболевания в полном объем был представлен в медицинской документации у 113 детей. Выявленные

Таблица 1
Медианы и квартили возраста
пациентов
с различными
гистологическими
типами ЭО ЦНС
на момент постановки диагноза

Рисунок 1 Распределение пациентов с различными типами ЭО ЦНС по возрастам на момент постановки диагноза

Параметры оценки	МБ	ATPO	Другие
Объем выборки (N пациентов)	82	25	17
Медиана возраста (мес)	72	9	29
Квартили (Q1, Q3) возраста (мес)	40,25; 102	7,5; 20	13; 36

симптомы в исследуемой когорте и их частота представлены на рисунке 2 (см. цветную вклейку), при этом самыми частыми были тошнота/ рвота, n=77 (68%) и головная боль, n=57 (50%), обусловленные нарастанием внутричерепной гипертензии.

(см. рис. 2). Встречаемость головной боли значимо зависит (р = $2.56 \cdot 10^{-5}$) от гистологического варианта опухоли: при МБ данный симптом встречался значимо чаще (р = $2.60 \cdot 10^{-4}$) чем при других ЭО с отношением шансов 5.85 (95% ДИ 2.42-14.14), а при АТРО — значимо реже (р = $1.51 \cdot 10^{-4}$) чем при других ЭО с отношением шансов 0.091 (95% ДИ 0.025-0.33).

Выбухание родничка встречалось: при АТРО в 8% случаев, при ЭО с многорядными розетками в 25% случаев, при ЭО ЦНС без дополнительной спецификации в 17% случаев, при МБ и НБ ЦНС не встречалось (см. рис. 3). Встречаемость выбухания родничка значимо зависит (p=0.012) от гистологического варианта опухоли: при МБ данный симптом встречался значимо реже (p=0.025), чем при других ЭО с отношением шансов 0 (95% ДИ 0–0.72).

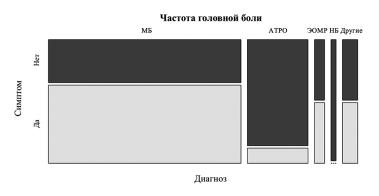
Судороги встречались: при МБ в 3% случаев, при АТРО в 8% случаев, при ЭО с многорядными розетками в 25% случаев, при ЭО ЦНС без дополни-

Параметры
сравненияОбщий тестМБ и АТРОМБ и АТРО
(не МБ и не АТРО)АТРО и другие
(не МБ и не АТРО)р-значение2,48 · 10 -97,25 · 10 -106,53 · 10 -40.029

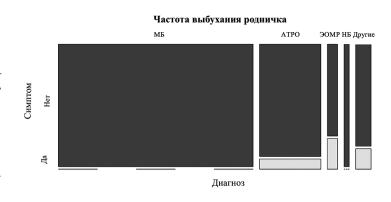
Таблица 2 Сравнение возраста пациентов исследуемой когорты в зависимости от гистологического варианта опухоли

При проведении анализа соответствий между возрастом пациентов и симптомами опухоли на момент диагностики установлено, что среди пациентов с ЭО с младшим возрастом значимо ассоциировались такие симптомы, как увеличение окружности головы/ выбухание родничка (медиана возраста — 3,25 мес) и кривошея (медиана — 16 мес). С более старшим возрастом ассоциировались головная боль (медиана — 69 мес), тошнота/рвота (медиана — 51 мес), диплопия (медиана — 122,5 мес), потеря массы тела (медиана 107 мес) и головокружение (медиана — 104,5 месяцев) (таб. 3).

Среди пациентов с ЭО ЦНС головная боль встречалась: при МБ в 64% случаев, при АТРО в 12% случаев, при ЭО с многорядными розетками в 50% случаев, при ЭО ЦНС без дополнительной спецификации в 50% случаев, при НБ ЦНС не встречалась


тельной спецификации в 17% случаев, при НБ ЦНС в 100% случаев (см. рис. 4). Встречаемость судорог значимо зависит ($p=3.49\cdot10^{-4}$) от гистологического варианта опухоли: при МБ данный симптом встречался значимо реже (p=0.020) чем при других ЭО с отношением шансов 0.12 (95% ДИ 0.024–0.61), а при НБ ЦНС — значимо чаще (p=0.034).

Наиболее частой локализацией опухолей в нашей когорте пациентов была задняя черепная ямка (3ЧЯ), n=102 (83,6%) с вовлечением ствола в 10,7% случаев. При этом опухоли с локализацией в 3ЧЯ были чаще ассоциированы с головной болью и тошнотой/рвотой, чем в случаях, не затрагивающих данную локализацию, и реже ассоциировались с судорогами (таб. 4). Для опухолей в теменной области судорожный синдром был более характерным, чем в случаях, не затрагивающих данную локализацию (таб. 4).


Таблица 3 Ассоциации между возрастом пациентов и клиническими проявлениями опухолей ЦНС в дебюте

Клинические	Объемы выборок (N), медианы (M) и квартили (Q1, Q3) возраста в месяцах Наличие симптомов Отсутствие симптомов		р -значение
проявления			-
Головные боли	N = 57, M = 69 Q1 = 44, Q3 = 109	N = 56, M = 21.5 Q1 = 8.75, Q3 = 43	1.30 · 10-9
Тошнота и рвота	N = 77, M = 51 Q1 = 26, Q3 = 96	N = 36, M = 32 Q1 = 15, Q3 = 67.5	0.019
Увеличение кружности головы/ ыбухание родничка	N = 4, M = 3.25 Q1 = 1.875, Q3 = 5.25	N = 109, M = 46 Q1 = 22, Q3 = 86	0.0016
Диплопия	N = 4, M = 122.5 Q1 = 107.2, Q3 = 150.5	N = 109, M = 41 Q1 = 20, Q3 = 81	0.0057
Іотеря массы тела	N = 4, M = 107 Q1 = 94.5, Q3 = 137.8	N = 109, M = 41 Q1 = 20, Q3 = 81	0.017
Головокружение	N = 6, M = 104.5 Q1 = 85, Q3 = 173.5	N = 107, M = 41 Q1 = 20, Q3 = 80	0.013
Кривошея	N = 7, M = 9 Q1 = 8.5, Q3 = 21	N = 113, M = 48 Q1 = 23, Q3 = 87	0.0057

Рисунок 3 Частота встречаемости выбухания родничка в зависимости от диагноза. МБ медуллобластома, АТРО — атипическая тератоиднорабдоидная опухоль, ЭОМР эмбриональная опухоль с многорядными розетками, НБ — нейробластома ЦНС

Рисунок 4 Частота встречаемости судорог в зависимости от диагноза. МБ — медуллобластома, АТРО — атипическая тератоиднорабдоидная опухоль, ЭОМР — эмбриональная опухоль с многорядными розетками, НБ — нейробластома ЦНС

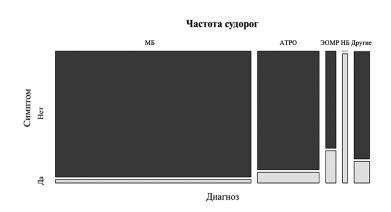


Таблица 4
Взаимосвязь между клиническими проявлениями заболевания и локализацией опухоли

Ассоциации локализации опухоли и симптомов	Отношение шансов (95% ДИ)	р -значение	
Задняя черепная ямка — головная боль	2.97 (0.97-9.10)	0.05025	
Задняя черепная ямка — тошнота/рвота	2.94 (1.025-8.44)	0.040	
Задняя черепная ямка — судороги	0.079 (0.017-0.37)	$1.28\cdot 10^{-4}$	
Теменная область — судороги	11.11 (1.55–79.65)	0.041	
теменных солиств судороги	11111 (1100 75100)	0.011	

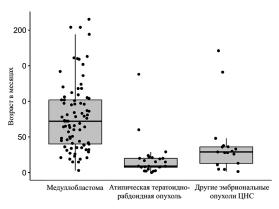
Таблица 5
Таблица сопря-
женности для
зависимости
между локализа-
цией опухоли вне
3ЧЯ и отсутствием
клинических
проявлений

U	Локализация опухоли			
Наличие клинических проявлений	Вне ЗЧЯ	3ЧЯ	Всего	— <i>р</i> -значение
Нет	3	1	4	
Да	14	93	107	0,011
Всего	17	94	111	

Из 111 пациентов, у которых имеются данные по симптомам и локализации опухоли, зарегистрировано отсутствие симптомов заболевания у 4 (3,6%). Трое (75%) из них относились к младшей возрастной группе (0, 0.5 и 2.5 мес) с диагнозом АТРО (n=2) и ЭОМР ЦНС (n=1) с локализацией опухоли вне ЗЧЯ

(таблица 5). Еще у 1 пациента (87 месяцев) имела место МБ с локализацией в ЗЧЯ. При дальнейшей оценке зависимости между локализацией опухоли и отсутствием клинических проявлений было установлено наличие статически значимой взаимосвязи между их отсутствием и локализацией вне ЗЧЯ (р=0,011).

Таблица 6 Длительность анамнеза заболевания в зависимости от гистологического варианта опухоли у иссле дуемой когорть пациентов


симптомов забо-

диагностики

левания на момент

опухоли у иссле-
дуемой когорты
пациентов
Рисунок 5
Распределение
возраста пациен-
тов в зависимости
от наличия/отсут-
ствия каких-либо

Диагноз	Средняя длительность анамнеза (мес)	Медиана длительности анамнеза (мес); разброс (мес)
Все пациенты	3,8	1 (0-52)
МБ	4,52	1,75 (0,1–52)
ATPO	1,68	1 (0-8)
ЭОМР	4	1,75 (0,5–12)
ЭО без спецификации	1,062	1,0 (0,5–2)
НБ ЦНС	6,75	6,75 (0,5-13)

При этом отсутствие симптомов также может ассоциироваться (р = 0,053, пограничная значимость) с младшим возрастом (см. рис. 5), что может быть связано с невозможностью в силу возраста описать имеющиеся жалобы. Наконец, есть статистически значимая взаимосвязь (р = 0.0029) между локализацией опухоли вне ЗЧЯ и младшим возрастом, что может объясняться ранее описанными

зависимостями между возрастом и типом опухоли. Таким образом, отсутствие симптомов, младший возраст и локализация вне ЗЧЯ попарно ассоциируются между собой.

Средняя длительность анамнеза заболевания у всех пациентов в нашей когорте составила 3,8 мес, медиана — 1 мес (0-52 мес). Медиана и средняя длительность анамнеза в зависимости от типа опухоли варьировалась (табл. 6) и была наибольшей при НБ ЦНС.

При оценке взаимосвязи между клиническими проявлениями и длительностью анамнеза выявлено 2 группы симптомов, которые значимо влияли на скорость постановки диагноза. Таковыми являлись тошнота и рвота (ОР 2.11, 95%-ДИ 1.32-3.36, р = 0,0017) и парезы/параличи (ОР 5.19, 95%-ДИ 1.61-16.79, p = 0,0059). Здесь OP — отношения рисков из модели Кокса, и тот факт, что их значения статистически значимо больше 1, говорит о том, что рассматриваемое событие (постановка диагноза) наступает быстрее при наличии указанных симптомов (см. также рис. 5-6 на цветной вкладке).

Обсуждение

ЭО являются одними из наиболее частых типов опухолей ЦНС у детей, особенно в младшей возрастной группе [1-5]. Эти опухоли характеризуются биологической гетерогенностью и клинической вариабельностью симптомов, что часто затрудняет и увеличивает срок до верификации диагноза. Несвоевременная диагностика в свою очередь приводит к тому, что диагноз устанавливается на более поздних стадиях, требует более агрессивного и длительного лечения, повышает вероятность осложнений, а также ухудшает прогноз пациентов [7]. Это обусловливает необходимость детальной оценки и пристального внимания к жалобам и симптомам, которые потенциально могут свидетельствовать о наличии опухоли ЦНС у ребенка. Особенно важным это является у новорожденных и детей младшего возраста, которые не могут указать на имеющиеся симптомы болезни и/ или детализировать их.

До настоящего времени понимание факторов риска развития опухолей ЦНС у детей ограничено и предполагаемые причины объясняют возникновение онкологического процесса лишь в меньшинстве случаев. Ионизирующее излучение остается единственным признанным воздействием окружающей среды, являющимся предиктором онкологических заболеваний. Наличие синдромов предрасположенности к опухолевым заболеваниям также является фактором развития опухолей головного мозга, но объясняет не более 10% случаев. [20, 21]. В нашей когорте пациентов также не было выявлено достоверных анамнестических факторов, кроме синдромов предрасположенности к опухолевым заболеваниям (2,4% случаев), что соответствует литературным данным. Но стоит отметить, что анализ анамнестических факторов был лимитирован доступностью информации в медицинской документации и небольшой выборкой пациентов. Проведение молекулярно-генетических исследований для идентификации герминальных мутаций в нашей когорте выполнялось лишь в 20% случаев, преимущественно у пациентов младшего

Опухоли ЦНС у детей, в том числе ЭО, характеризуются разнообразными клиническими проявлениями, включая неврологические, офтальмологические, эндокринные и психологические, а в ряде случаев могут иметь и неспецифические проявления и/или бессимптомное течение [24, 25]. Симптомы, возникающие при опухолях ЦНС, можно разделить на общемозговые, обусловленные повышением ВЧД, и очаговые, которые регистрируются значимо реже, зависят от локализации опухоли и имеют широкий спектр проявлений, включая двигательные нарушения, расстройства чувствительности, судорожный синдром и другие.

Согласно данным литературы симптомы повышения ВЧД во многом определяются возрастом ребенка, при этом у младенцев чаще регистрируется увеличение окружности головы и/или выбухание родничка, в то время как у детей старшего возраста

доминируют головная боль, тошнота/рвота, нарушение сознания, отек диска зрительного нерва [7,24]. В нашей когорте пациентов получены сопоставимые результаты, при этом с младшим возрастом ассоциировались такие симптомы как увеличение окружности головы/выбухание родничка (р = 0.0016) и кривошея (р = 0.0057), а со старшим — головная боль (р < 0.0001), головокружение (р = 0.013), тошнота и рвота (р = 0.019), диплопия (р = 0.0057). Прежде всего объяснением этому могут служить компенсаторные возможности у детей раннего возраста, обусловленные наличием родничков, а также невозможность вербализации имеющихся жалоб.

По данным крупного метаанализа тошнота и рвота являются наиболее распространенным симптомом опухолей ЦНС у детей и встречаются во всех возрастных группах с частотой около 30% [24]. Также и у наших пациентов таковые преобладали и были зарегистрированы у 68%, что определялось преимущественной локализацией опухоли в ЗЧЯ, предрасполагающей к более раннему развитию внутричерепной гипертензии (82,3%). Другими частыми неврологическими проявлениями в исследуемой когорте были головная боль (50%), нарушение походки (25,6%) и судороги (7,9%). Офтальмологические симптомы имели место у 20% пациентов, из них доминировали страбизм (7%) и диплопия (3,5%). Несмотря на то, что в наш анализ были включены пациенты только с ЭО, полученные результаты по частоте и видам ассоциированных симптомов в соответствии с данными литературы приближены к таковым и при других опухолях ЦНС [25].

Помимо возраста ребенка на клиническую симптоматику оказывает влияние локализация опухоли. Так, в случаях поражения ЗЧЯ, как правило, имеют место повышение ВЧД, нарушения походки и координации. В то же время для опухолей супратенториальной/ срединной локализации характерны судороги (\sim 1/3 случаев), нарушение зрения и/ или двигательной активности, однако, зачастую клиническая картина бывает неспецифична, что затрудняет диагностику [7, 26]. Это коррелирует с данными в нашей когорте пациентов — у детей с опухолями в ЗЧЯ чаще отмечались головная боль (p = 0,05025) и тошнота/рвота (p = 0,041), а при локализации в теменной области — судороги (p = 0,041).

Распределение гистологических вариантов ЭО в исследуемой нами когорте и по данным мировой статистики сопоставимо, при этом отмечается их характерное распределение по возрасту и локализации опухоли, что тем самым обусловливает развитие свойственных для таковой симптомов заболевания (рис. 2-4). Так, МБ обычно возникает в более старшем возрасте и всегда имеет инфратенториальную локализацию (ЗЧЯ, мозжечок, парастволовая), в то время как для АТРО характерен более младший возраст больных и значимая вариабельность первичного расположения опухоли (супра-/ инфратенториально, реже — спинной мозг) [3]. У 4 пациентов из нашей группы симптомов заболевания не было и опухоль являлась «случайной находкой», в большинстве случаев (75%) при проведении плановой нейросонографии новорожденным. Такую бессимптомную манифестацию можно объяснить ранним возрастом детей, локализацией опухоли

вне ЗЧЯ, что не вызывало повышения ВЧД, а также коротким периодом анамнеза.

Временной интервал от появления первых симптомов заболевания до постановки диагноза у пациентов исследуемой когорты варьировал от 0 до 52 месяцев, с медианой 3,8 месяцев, что соответствует аналогичным показателям в международной литературе. По результатам ряда исследований, среднее время до постановки диагноза у детей с различными опухолями ЦНС составляет от 2.5 до 7.7 месяцев [21, 27, 28, 29]. Следует отметить, что в нашей группе больных средняя длительность анамнеза была более продолжительной у детей старшего возраста с диагнозом МБ и меньшей по продолжительности у пациентов раннего возраста с ЭО без дополнительной спецификации и АТРО. Наиболее длительный анамнез зарегистрирован у детей с НБ ЦНС, однако, малое количество пациентов накладывает ограничения на полученные различия. В зарубежных исследованиях отмечено, что более короткий анамнез заболевания у пациентов младшей возрастной группы может быть обусловлен более пристальным вниманием к симптомам заболевания со стороны родителей и медицинских работников, более выраженной клинической картиной ввиду агрессивного характера опухолевого роста и стремительного нарастания ВЧД [30-33].

Нами выявлено две группы симптомов, ассоциированных с наличием опухоли, при которых диагноз устанавливался быстрее, и, таковыми являлись тошнота/рвота (р = 0.0017) и парезы/параличи (р = 0.0059). Можно предположить, что указанные нарушения являются более убедительным проявлением неблагополучия в здоровье ребенка для родителей и врачей, способствуют быстрой декомпенсации соматического статуса, что требует госпитализации в стационар, тем самым ускоряя сроки до проведения диагностических исследований. Также стоит отметить, что в большинстве случаев тошнота/рвота сопровождались и другими симптомами повышения ВЧД (головная боль, нарушение сознания, упорный характер рвоты, не приносящей облегчение пациенту, с преимущественным возникновением в утренние часы), либо очаговой симптоматикой, что в совокупности приводило к более ранней верификации диагноза. Как уже упоминалось ранее, отложенная постановка диагноза может быть ассоциирована с менее благоприятным прогнозом, и, более того, способствовать повышенной тревожности родителей, их меньшему доверию к медицинскому персоналу, что неизбежно ведет к снижению комплаенса [34].

Таким образом, при наличии у пациента неврологических или других групп вышеперечисленных симптомов заболевания, которые могут потенциально свидетельствовать о наличии опухоли ЦНС, требуется выполнение своевременной диагностики, включающей оценку неврологического и офтальмологического статусов, проведение адекватной нейровизуализации, при наличии показаний — других видов инструментальной диагностики [24]. В большинстве случаев в соотвествии с литературными данными инициально используемым видом визуализации является компьютерная томография (КТ) головного мозга, в связи с ее большей доступностью и технической простотой метода [35]. КТ позволяет

оценить/ исключить наличие опухоли, ее локализацию, сопутствующую гидроцефалию и другие возможные осложнения. Тем не менее, золотым стандартом диагностики для опухолей ЦНС у детей остается магнитно-резонансная томография (МРТ) с контрастным усилением, что позволяет более детально оценить локализацию и распространенность опухолевого процесса, анатомическое соотношение образования с соседними структурами и сосудами [36]. В 2010 году Wilne et al. разработали алгоритм для ранней диагностики опухолей ЦНС у детей [8]. Согласно этому алгоритму, проведение нейровизуализации показано пациентам со следующими жалобами и симптомами: (1) персистирующая головная боль (> 4 недель) с одной из характеристик: боль пробуждает ребенка ото сна, появляется после пробуждения, возникает у ребенка младше 4-х лет или связана с дезориентаций; (2) персистирующая рвота после пробуждения; (3) офтальмологические симптомы, включая: отек диска зрительного нерва, атрофия зрительного нерва, появление нистагма или паралитического косоглазия, снижение остроты зрения (не вызванное нарушением рефракции), ограничение полей зрения, экзофтальм; (4) нарушение двигательной активности, включая: регресс двигательных навыков, локальное снижение двигательной активности, нарушение походки и/или координации, паралич Белла без улучшения в течение 4-х недель, трудности с глотанием; (5) впервые возникшие судороги или угнетение сознания у детей [8].

Наше исследование имеет несколько ограничений. Учитывая, что анализируемые данные собраны ретроспективно, часть из них была недоступна для восстановления или отражена в недостаточно полном объеме. Для более точной и детальной оценки информации об особенностях клинических проявлений в дебюте заболевания при опухолях ЦНС, возможных факторах риска у детей с ЭО ЦНС необходимо проведение проспективных многоцентровых исследований с большей выборкой пациентов.

Выводы

У пациентов с ЭО ЦНС выявляются статистически достоверные взаимосвязи между возрастом, гистологическим типом, локализацией опухоли и некоторыми симптомами. Все выявленные зависимости клинически обоснованы и согласуются между собой. Тот факт, что клинические проявления, наиболее часто встречающиеся в исследуемой когорте пациентов с ЭО ЦНС, не являются строго специфичными для опухолей ЦНС, обусловливает необходимость детальной оценки симптомов, которые потенциально могут свидетельствовать о наличии опухоли ЦНС у ребенка. Онкологическая

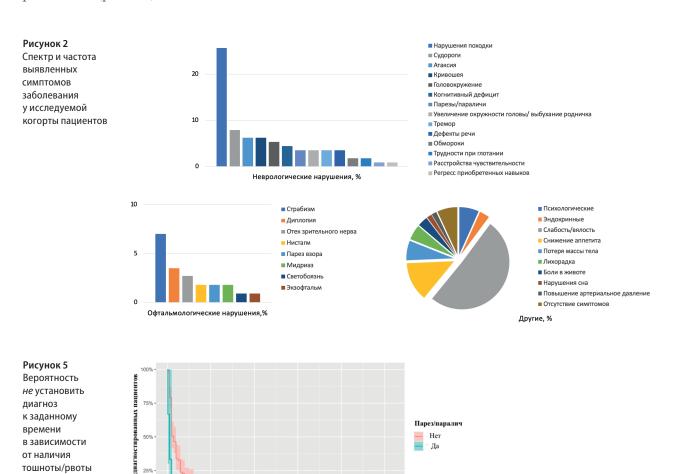
настороженность должна проявляться не только в отношении пациентов со специфическими неврологическими признаками, но и для детей с неспецифической клинической картиной, особенно если такие симптомы имеют длительно персистирующий характер, прогредиентное течение и нет дополнительных факторов, подтверждающих диагноз, отличный от опухоли ЦНС. Внимательная оценка жалоб, симптомов и ранний рационализированный переход к инструментальной диагностике позволяют ускорить постановку диагноза и улучшить исходы пациентов.

Литература | References

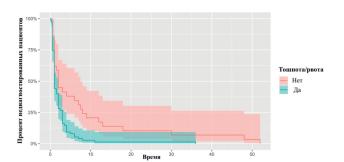
- Ostrom Q. T., Cioffi G., Waite K. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2021.23(12 Suppl 2): iii1-iii105. doi: 10.1093/ neuonc/noab200.
- Ostrom Q. T., Price M., Ryan K. et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2022. 24(Suppl 3): iii1-iii38. doi: 10.1093/neuonc/noac161.
- Kram D. E., Henderson J. J., Baig M. et al. Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. *Bioengineering (Basel)*. 2018. 5(4). doi: 10.3390/bioengineering5040078.
- Blessing M. M. and Alexandrescu S. Embryonal Tumors of the Central Nervous System: An Update. Surg Pathol Clin. 2020;13(2): 235–247. doi: 10.1016/j.path.2020.01.003.
- Shih R.Y. and Koeller K.K. Embryonal Tumors of the Central Nervous System: From the Radiologic Pathology Archives. *Radiographics*. 2018;38(2):525–541 doi: 10.1148/ rg.2018170182.
- Louis D. N., Perry A., Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol*. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106.

- Goldman R. D., Cheng S., and Cochrane D. D. Improving diagnosis of pediatric central nervous system tumours: aiming for early detection. CMAJ. 2017;189(12): E459-E463. doi: 10.1503/cmaj.160074.
- Wilne S., Koller K., Collier J. et al. The diagnosis of brain tumours in children: a guideline to assist healthcare professionals in the assessment of children who may have a brain tumour. Arch Dis Child. 2010;95(7):534–9 doi: 10.1136/ adc.2009.162057.
- Medina L. S., Kuntz K. M., Pomeroy S. Children with headache suspected of having a brain tumor: a cost-effectiveness analysis of diagnostic strategies. *Pediatrics*. 2001 Aug;108 (2):255–63. doi: 10.1542/peds.108.2.255.
- Trofimova A., Vey B. L., Mullins M. E., Wolf D. S., Kadom N. Imaging of Children With Nontraumatic Headaches. AJR Am J Roentgenol. 2018 Jan; 210(1):8–17. doi: 10.2214/AJR.17.18561.
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. https://www.R-project.org/
- 12. Therneau T. M. A Package for Survival Analysis in R. 2023. https://CRAN.R-project.org/package = survival
- Therneau T.M., Grambsch P.M. Modeling Survival Data: Extending the Cox Model. Springer, New York. 2000. ISBN 0-387-98784-3.

- Aragon T.J. epitools: Epidemiology Tools. R package version 0.5–10.1. 2020. https://CRAN.R-project.org/package = epitools
- Cochran W.G. The χ2 Test of Goodness of Fit. Annals of Mathematical Statistics. 1952; 23:315–345. doi: 10.1214/ aoms/1177729380.
- Cochran, W. G. Some Methods for Strengthening the Common χ2 Tests. *Biometrics*. 1954, 10:417–451. doi: 10.2307/3001616.
- Campbell I. Chi-squared and Fisher-Irwin tests of two-bytwo tables with small sample recommendations. Stat Med. 2007; 26(19): 3661–3675. doi: 10.1002/sim.2832.
- Cox D. R. Regression Models and Life-Tables. *Journal of the Royal Statistical Society: Series B (Methodological)*. 1972;34:187–202. doi: 10.1111/j.2517-6161.1972.tb00899.x.
- Kaplan E. L., Meier P. Nonparametric Estimation from Incomplete Observations. *Journal of the American Statistical Association*. 1958; 53(282): 457–481. doi: 10.1 080/01621459.1958.10501452.
- Muskens I.S., Feng Q., Francis S.S., et al. Pediatric glioma and medulloblastoma risk and population demographics: a Poisson regression analysis. *Neurooncol Adv.* 2020 Jul 22;2(1): vdaa089. doi: 10.1093/noajnl/vdaa089.
- Ostrom Q. T., Adel Fahmedeh M., Cote D. J. et al. Risk factors for childhood and adult primary brain tumors. *Neuro Oncol.* 2021;21 (11): 1357–1375. doi: 10.1093/neuonc/noz123
- Woehrer A., Slavc I., Waldhoer T., et al. Incedence of atypical/teratoid rhabdoid tumors in children. ACS J. 2010; 116 (24): 5725–5732. doi: 10.1002/cncr.25540.
- Nguyen T. M.K., Behnert A., Pietsch T., Vokuhl C., Kratz C. P. Proportion of children with cancer that have an indication for genetic counceling and testing based on the cancer type irrespective of other features. *Fam. Cancer*. 2021 Oct. 20;(4): 273–277. doi: 10.1007/s10689-021-00234-4.
- Wilne S., Collier J., Kennedy C. et al. Presentation of childhood CNS tumours: a systematic review and meta-analysis. *Lancet Oncol*. 2007;8(8):685–95. doi: 10.1016/ S1470-2045(07)70207-3.
- Coven S. L., Stanek J. R., Hollingsworth E. et al. Delays in diagnosis for children with newly diagnosed central nervous system tumors. *Neurooncol Pract*. 2018. 5(4):227–233. doi: 10.1093/nop/npy002.


- Chu T.P.C., Shah A., Walker D. et al. Where are the opportunities for an earlier diagnosis of primary intracranial tumours in children and young adults? *Eur J Paediatr Neurol*. 2017;21(2):388–395. doi: 10.1016/j.ejpn.2016.10.010.
- Mehta V., Chapman A., McNeely P. D. et al. Latency between symptom onset and diagnosis of pediatric brain tumors: an Eastern Canadian geographic study. *Neurosurgery*. 2002. 51(2):365–72; discussion 372–3.
- 28. Wilne S. H., Ferris R. C., Nathwani A. et al. The presenting features of brain tumours: a review of 200 cases. *Arch Dis Child*. 2006;91(6):502–6. doi: 10.1136/adc.2005.090266.
- Haimi M., Peretz Nahum M., and Ben Arush M. W., Delay in diagnosis of children with cancer: a retrospective study of 315 children. *Pediatr Hematol Oncol.* 2004; 21(1): 37–48.
- Dobrovoljac M., Hengartner H., Boltshauser E. et al. Delay in the diagnosis of paediatric brain tumours. *Eur J Pediatr*. 2002;161(12):663–7. doi: 10.1007/s00431-002-1088-4.
- Brasme J. F., Chalumeau M., Doz F. et al. Interval between onset of symptoms and diagnosis of medulloblastoma in children: distribution and determinants in a populationbased study. *Eur J Pediatr*. 2012;171(1):25–32. doi: 10.1007/ s00431-011-1480-z.
- 32. Ramaswamy V., Remke M., Shih D. et al. Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent. *Pediatr Blood Cancer*. 2014;61(7):1190–4. doi: 10.1002/pbc.25002.
- Kehoe K., Sivaguru H., Coulter I. et al. Delay in the diagnosis of paediatric brain tumours: a systematic review. Childs Nerv Syst. 2023;39(8):2053–2063. doi: 10.1007/s00381-023-06022-y.
- Mazor K. M., Roblin D. W., Greene S. M. et al. Toward patient-centered cancer care: patient perceptions of problematic events, impact, and response. *J Clin Oncol.* 2012;30(15):1784–90. doi: 10.1200/JCO.2011.38.1384.
- Jaju A., Li Y., Dahmoush H. et al. Imaging of pediatric brain tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee/ASPNR White Paper. Pediatr Blood Cancer. 2023. 70 Suppl 4 (Suppl 4): e30147. doi: 10.1002/ pbc.30147.
- Jaju A., Yeom K. W., and Ryan M. E., MR Imaging of Pediatric Brain Tumors. *Diagnostics (Basel)*. 2022. 12(4). doi: 10.3390/diagnostics12040961.


К статье


Аспекты диагностики эмбриональных опухолей центральной нервной системы у детей: что должен знать детский врач? (стр. 47–56)

To article

Diagnostic aspects of pediatric embryonal tumors of the central nervous system: what should know pediatrician (p. 47–56)

